精英家教网 > 初中数学 > 题目详情
(2013•邓州市一模)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.
分析:(1)由题意抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4,根据待定系数法可以求得该抛物线的解析式;
(2)假设存在,设出时间t,则根据线段PQ被直线CD垂直平分,再由垂直平分线的性质及勾股定理来求解t,看t是否存在;
(3)假设直线x=1上是存在点M,使△MPQ为等腰三角形,此时要分两种情况讨论:①当PQ为等腰△MPQ的腰时,且P为顶点;②当PQ为等腰△MPQ的腰时,且Q为顶点;然后再根据等腰三角形的性质及直角三角形的勾股定理求出M点坐标.
解答:解:(1)∵抛物线过C(0,-8),
∴c=-8,即y=ax2+bx-8,
由函数经过点(14,0)及对称轴为x=4可得
-
b
2a
=4
196a+14b-8=0

解得:
a=
2
21
b=-
16
21

∴该抛物线的解析式为y=
2
21
x2-
16
21
x-8.
(2)

存在直线CD垂直平分PQ.
由函数解析式为y=
2
21
x2-
16
21
x-8,可求出点A坐标为(-6,0),
在Rt△AOC中,AC=
AO2+OC2
=
100
=10=AD,
故可得OD=AD-OA=4,点D在函数的对称轴上,
∵线CD垂直平分PQ,
∴∠PDC=∠QDC,PD=DQ,
由AD=AC可得,∠PDC=∠ACD,
∴∠QDC=∠ACD,
∴DQ∥AC,
又∵DB=AB-AD=20-10=10=AD,
∴点D是AB中点,
∴DQ为△ABC的中位线,
∴DQ=
1
2
AC=5,
∴AP=AD-PD=AD-DQ=10-5=5,
∴t=5÷1=5(秒),
∴存在t=5(秒)时,线段PQ被直线CD垂直平分.
在Rt△BOC中,BC=
OC2+OB2
=
82+142
=2
65

而DQ为△ABC的中位线,Q是BC中点,
∴CQ=
65

∴点Q的运动速度为每秒
65
5
单位长度;
(3)存在,过点Q作QH⊥x轴于H,则QH=
1
2
OC=4,PH=OP+OH=1+7=8,

在Rt△PQH中,PQ=
42+82
=
80
=4
5

①当MP=MQ,即M为顶点,则此时CD与PQ的交点即是M点(上面已经证明CD垂直平分PQ),
设直线CD的直线方程为:y=kx+b(k≠0),
因为点C(0,-8),点D(4,0),
所以可得直线CD的解析式为:y=2x-8,
当x=1时,y=-6,
∴M1(1,-6);
②当PQ为等腰△MPQ的腰时,且P为顶点.
设直线x=1上存在点M(1,y),因为点P坐标为(-1,0),
从而可得PM2=22+y2
又PQ2=80,
则22+y2=80,
即y=±
76

∴M2(1,2
19
),M3(1,-2
19
);
③当PQ为等腰△MPQ的腰时,且Q为顶点,点Q坐标为(7,-4),
设直线x=1存在点M(1,y),
则QM2=62+(y+4)2=80,
解得:y=2
11
-4或-2
11
-4;
∴M4(1,-4+2
11
),M5(1,-4-2
11
);
综上所述:存在这样的五点:
M1(1,-6),M2(1,2
19
),M3(1,-2
19
)M4(1,-4+2
11
),M5(1,-4-2
11
).
点评:此题是一道综合题,难度较大,主要考查二次函数的性质,用待定系数法求函数的解析式,还考查等腰三角形的性质,同时还让学生探究存在性问题,对待问题要思考全面,学会分类讨论的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•邓州市一模)根据有关数据表明:某市现在的常住人口总数由十年前的400万人增加到现在的450万人,具体常住人口的学历状况统计图如下(部分信息未给出):

解答下列问题:
(1)计算现在该市常住人口中初中学历的人数,并把条形统计图补充完整;
(2)现在常住人口与十年前相比,该市常住人口中高中学历人数增长的百分比是多少?
(3)若从该市现在常住人口中随机选择1名,则他的学历正好是大学的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邓州市一模)如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为
6个
6个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邓州市一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN=
3cm
3cm
,AM=
1cm
1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邓州市一模)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD以每秒5个单位长的速度向点D匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度向点B匀速运动;点P、Q同时出发,当点P与点D重合时停止运动,点Q也随之停止,设点P的运动时间为t秒.
(1)点P到达点A、D的时间分别为
10
10
秒和
25
25
秒;
(2)当点P在BA边上运动时,过点P作PN∥BC交DC于点N,作PM⊥BC,垂足为M,连接NQ,已知△PBM与△NCQ全等.
①试判断:四边形PMQN是什么样的特殊四边形?答:
矩形
矩形

②若PN=3PM,求t的值;
(3)当点P在AD边上运动时,是否存在PQ=DC?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案