精英家教网 > 初中数学 > 题目详情

作业宝如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于D点,与边AC交于E点,过D作DF⊥AC于F.
(1)求证:DF是⊙O的切线;      
(2)若DE=数学公式,AB=5,求AE的长.

(1)证明:如图,连接OD、AD.
∵AB是直径,
∴∠ADB=90°,即AD⊥BC.
∵AB=AC,
∴AD是△ABC的中线,即D是BC的中点,
∵O是AB的中点,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;

(2)解:过D作DG⊥AB,垂足为G.
由(1)知,AD是等腰△ABC底边BC的中线、高线,
∴AD平分∠BAC,
∴DE=DB=
在Rt△ABD中,
在Rt△ABD中,,即
∴DG=2.
∵AD平分∠BAC,DF⊥AC,DG⊥AB,
∴DF=DG=2,
在Rt△DEF中,
在Rt△ADF中,
∴AE=AF-EF=3.
分析:(1)如图,连接OD、AD.欲证明DF是⊙O的切线,只需证得DF⊥OD;
(2)过D作DG⊥AB,垂足为G.根据等腰△ABC“三合一”的性质推知AD平分∠BAC,则DE=DB=.在Rt△ABD中,根据勾股定理求得AD、的长度,然后利用面积法求得
DG=2;然后由角平分线的性质证得DF=DG=2,在Rt△DEF中,.在Rt△ADF中,,所以
AE=AF-EF=3.
点评:本题考查了切线的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案