分析 由AB为⊙O的直径,得到∠ADB=90°,根据邻补角的定义得到∠ADE=90°,根据切线的性质得到∠EAB=90°,推出△EAD∽△EBA,根据相似三角形的性质得到$\frac{AE}{DE}=\frac{EB}{AE}$,得到AE2=ED•EB,根据三角函数的定义得到AB=6,由勾股定理得到BE=$\sqrt{A{E}^{2}+A{B}^{2}}$=3$\sqrt{5}$,即可得到结论.
解答 解:∵AB为⊙O的直径,
∴∠ADB=90°,∴∠ADE=90°,
∵AE为⊙O的切线,
∴∠EAB=90°,
∵∠E=∠E,
∴△EAD∽△EBA,∴$\frac{AE}{DE}=\frac{EB}{AE}$,
∴AE2=ED•EB,
在Rt△AEB中,AE=3,tan∠ABE=$\frac{1}{2}$,
∴$\frac{AE}{AB}=\frac{1}{2}$,∴AB=6,
∴BE=$\sqrt{A{E}^{2}+A{B}^{2}}$=3$\sqrt{5}$
∴32=ED•3$\sqrt{5}$,
∴ED=$\frac{3\sqrt{5}}{5}$,
∴BD=BE-ED=3$\sqrt{5}$-$\frac{3\sqrt{5}}{5}$=$\frac{12\sqrt{5}}{5}$.
点评 本题考查了切线的性质,勾股定理,圆周角定理,相似三角形的判定和性质,熟练掌握切线的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
| 解:(1)移项,得x(x+1)-2x=0 分解因式得,x(x+1-2)=0 所以,x=0,或x-1=0 所以,x1=0,x2=1 | (2)变形得,(x+1)(x-3)=1×7 所以,x+1=7,x-3=1 解得,x1=6,x2=4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com