精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,点D是AB的黄金分割点(AD>BD),BC=AD,如果∠ACD=90°,那么tanA=
 

精英家教网
分析:首先根据黄金分割的定义得出
AD
AB
=
5
-1
2
,AD2=AB•BD,再由两边对应成比例,且夹角相等的两三角形相似,可证△BCD∽△BAC,根据相似三角形对应边成比例及已知条件BC=AD可得
CD
AC
=
BC
AB
=
AD
AB
,最后根据正切函数的定义得出结果.
解答:解:∵点D是AB的黄金分割点(AD>BD),
AD
AB
=
5
-1
2
,AD2=AB•BD,
∵BC=AD,
∴BC2=AB•BD,
BC
BD
=
AB
BC

又∵∠B=∠B,
∴△BCD∽△BAC,
CD
AC
=
BC
AB
=
AD
AB
=
5
-1
2

在△ACD中,∠ACD=90°,
∴tanA=
CD
AC
=
5
-1
2

故答案为
5
-1
2
点评:本题考查了黄金分割、锐角三角函数的定义,相似三角形的判定与性质,综合性较强,难度中等.本题证明△BCD∽△BAC,得出
CD
AC
=
AD
AB
是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案