【题目】如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,使点B落在点E处,连结DE,若DE:AC=3:5,则的值为___.
【答案】
【解析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠EAC=∠DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
解:∵矩形沿直线AC折叠,点B落在点E处,
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的对边AB∥CD,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
设AE与CD相交于F,则AF=CF,
∴AE-AF=CD-CF,
即DF=EF,
∴,
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
∴,
设DF=3x,FC=5x,则AF=5x,
在Rt△ADF中,AD===4x,
又∵AB=CD=DF+FC=3x+5x=8x,
∴.
“点睛”本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.
科目:初中数学 来源: 题型:
【题目】两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥轴于点C,交的图象于点A,PC⊥轴于点D,交的图象于点B. 当点P在的图象上运动时,以下结论:
①
②的值不会发生变化
③PA与PB始终相等
④当点A是PC的中点时,点B一定是PD的中点.
其中一定不正确的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持△ABC是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是 . 随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是____.(填“众数”“方差”“中位数”或“平均数”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com