已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )
A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)
科目:初中数学 来源:2014年初中毕业升学考试(吉林卷)数学(解析版) 题型:解答题
如图①,直角三角形AOB中,∠AOB=90°,AB平行于x轴,OA=2OB,AB=5,反比例函数 的图象经过点A.
(1)直接写出反比例函数的解析式;
(2)如图②,P(x,y)在(1)中的反比例函数图象上,其中1<x<8,连接OP,过O 作OQ⊥OP,且OP=2OQ,连接PQ.设Q坐标为(m,n),其中m<0,n>0,求n与m的函数解析式,并直接写出自变量m的取值范围;
(3)在(2)的条件下,若Q坐标为(m,1),求△POQ的面积.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(内蒙古包头、乌兰察布卷)数学(解析版) 题型:解答题
如图,已知AB,AC分别是⊙O的直径和弦,点G为
上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.
(1)求证:△PCD是等腰三角形;
(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市通州区中考二模数学试卷(解析版) 题型:解答题
设
,
是任意两个不等实数,我们规定:满足不等式
≤
≤
的实数
的所有取值的全体叫做闭区间,表示为
. 对于一个函数,如果它的自变量
与函数值
满足:当m≤
≤n时,有m≤
≤n,我们就称此函数是闭区间
上的“闭函数”.
(1)反比例函数
是闭区间
上的“闭函数”吗?请判断并说明理由;
(2)若一次函数
是闭区间
上的“闭函数”,求此函数的表达式;
(3)若二次函数
是闭区间
上的“闭函数”,直接写出实数
,
的值.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京市西城区中考一模数学试卷(解析版) 题型:选择题
如图,在平面直角坐标系
中,以点A(2,3)为顶点任作一直角∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P、Q,连接PQ,过点A作AH⊥PQ于点H,设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com