精英家教网 > 初中数学 > 题目详情

已知关于x的方程数学公式
(1)求证:无论k取什么实数,这个方程总有实数根;
(2)如果等腰三角形的腰和底分别是这个方程的两根:①求这个三角形的周长(用含k的代数式表示);②求k的取值范围.

解:(1)∵△=(2k+1)2-4×4(k-
=4k2+4k+1-16k+8
=4k2-12k+9
=(2k-3)2
∵(2k-3)2,≥0,
∴△≥0,
∴无论k取什么实数,这个方程总有实数根;

(2)∵x=
∴x1=2,x2=2k-1,
①当以2为腰,2k-1为底,则三角形的周长为2k+3;
当以2为底,2k-1为腰时,三角形的周长为4k.
②当以2为腰,2k-1为底时,<k<
当以2为底,2k-1为腰时,k>1.
分析:(1)先求出△,变形为△=(2k-3)2,得到△≥0,根据△的意义即可得到结论;
(2)利用求根公式先求出方程的两根x1=2,x2=2k-1,然后分类推论:当以2为腰或当以2为底,分别求出三角形的周长,再利用三角形的三边关系分别得到k的取值范围.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了代数式的变形、一元二次方程的解法和分类讨论的思想的运用以及三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并直接写出以这两根为直角边的直角三角形外接圆半径的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程4x-3m=2的解是x=m,则m=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程|x|=ax-a有正根且没有负根,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程3x2-4x•sinα+2(1-cosα)=0有两个不相等的实数根,α为锐角,那么α的取值范围是
 

查看答案和解析>>

同步练习册答案