| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形,根据平行四边形的性质得出AD=4AG,从而得到答案.
解答 解:∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正确,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中点,
∴HF=$\frac{1}{2}$BC,
∵BC=$\frac{1}{2}$AB,AB=BD,
∴HF=$\frac{1}{2}$BD;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),故④正确;
∴AE=DF,
∵FE=AB,
∴四边形ADFE为平行四边形,
∴AD≠AE,;
故②说法不正确;
∴AG=$\frac{1}{2}$AF,
∴AG=$\frac{1}{4}$AB,
∵AD=AB,
则AD=4AG,故③说法正确,
正确的有3个,
故选:C.
点评 本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题的关键是需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=$\frac{1}{{x}^{2}}$ | B. | y=$\sqrt{2}$x | C. | y=$\frac{5}{x}$ | D. | y=$\frac{x}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | sinB=$\frac{3}{5}$ | B. | cosB=$\frac{3}{4}$ | C. | tanB=$\frac{4}{3}$ | D. | cotB=$\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com