【题目】已知一元二次方程x2﹣2x+m﹣1=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.
【答案】(1)m<2;(2)m=.
【解析】
试题分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,即可求出m的取值范围.(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.
试题解析:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①,∵x1,x2是方程的两个实数根,∴x1x2=m﹣1,∵x12+x1x2=1,∴x12+m﹣1=1 ②,由①②得x1=0.5,把x=0.5代入原方程得,m=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=8cm,∠BAC=120°.
(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);
(2)求它的外接圆半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.
(1)求证:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算正确的是( )
A. –2(a–b)=–2a–b B. –2(a–b)=–2a+b
C. –2(a–b)=–2a–2b D. –2(a–b)=–2a+2b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com