【题目】如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D。
(1)求证:BC是⊙O切线;
(2)若BD=5,DC=3,求AC的长。
【答案】(1)证明见解析;(2)6.
【解析】
试题分析:(1)要证BC是⊙O的切线,只要连接OD,再证OD⊥BC即可.
(2)过点D作DE⊥AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过证明△BDE∽△BAC,根据相似三角形的性质得出AC的长.
试题解析:(1)连接OD;
∵AD是∠BAC的平分线,
∴∠1=∠3.
∵OA=OD,
∴∠1=∠2.
∴∠2=∠3.
∴OD∥AC.
∴∠ODB=∠ACB=90°.
∴OD⊥BC.
∴BC是⊙O切线.
(2)过点D作DE⊥AB,
∵AD是∠BAC的平分线,
∴CD=DE=3.
在Rt△BDE中,∠BED=90°,
由勾股定理得:BE==4,
∵∠BED=∠ACB=90°,∠B=∠B,
∴△BDE∽△BAC.
∴.
∴.
∴AC=6.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数与反比例函数的图象相交于A(-4,-2),B(a,4)两点.
(1)求反比例函数的表达式和点B的坐标;
(2)根据图象直接同答:当白变量x在什么范围时,一次函数的值大于反比例函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1, 0),B1C1∥B2C2∥B3C3.点A3到x轴的距离是.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】袋子中装有2个黑球和3个白球,这些球除了颜色不同外形状、大小、质地等完全相同,在看不到球的条件下,随机地一次从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是白球
B.摸出的三个球中至少有一个球是黑球
C.摸出是三个球中至少有两个球的黑球
D.摸出的单个球中至少有两个球是白球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.
证明: ∵AD平分∠BAC
∴∠________=∠_________(角平分线的定义)
在△ABD和△ACD中
△ABD≌△ACD( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC=8,∠BAC=30°.将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处.延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com