精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,已知A点的坐标为(-1,0),点B的坐标是(9,0)以AB为直径作⊙O′,交y轴负半轴于点C,连接AC、BC,过A、B、C作抛物线
(1)求抛物线的解析式;
(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,连接BD求BD直线的解析式;
(3)在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的
13
,求此时点P的坐标.
分析:(1)根据△OAC∽△OCB即可求得CO的长,即可确定C的坐标,利用待定系数法即可求得抛物线的解析式;
(2)连接O'D,求得D的坐标,再根据待定系数法即可求得直线的解析式;
(3)过点P作PH⊥x轴于H,交直线CD于M,求得直线CD的解析式,即可求得△BCD的面积,然后根据P的横坐标的范围,分情况进行讨论,即可求得.
解答:解:(1)AB是⊙O'的直径
∴AC⊥BC
又OC⊥AB
∴△OAC∽△OCB
AO
CO
=
CO
BO

CO=
AO•BO
=3

∴C(0,-3)(1分)
设抛物线解析式为y=ax2+bx+c,
抛物线过A(-1,0)、B(9,0)和C(0,-3)
a-b+c=0
81a+9b+c=0
c=-3
解得
a=
1
3
b=-
8
3
c=-3
(2分)
所求抛物线解析式为y=
1
3
x2-
8
3
x-3
(3分)

(2)连接O'D,
∵CD平分∠BCE,
∴∠BCD=
1
2
∠DO'B=45°
精英家教网∴∠DO'B=90°
DO′=
1
2
AB
=5
∴D(4,-5)(1分)
设直线BD的解析式为y=kx+b,则
9k+b=0
4k+b=-5
解得
k=1
b=-9
(2分)
直线BD的解析式为y=x-9.(3分)

(3)设点P(x,
1
3
x2-
8
3
x-3

过点P作PH⊥x轴于H,交直线CD于M,
易得直线CD的解析式为y=-
1
2
x-3
,则M(x,-
1
2
x-3

易知直线CD与抛物线交点为C(0,-3)和N(
13
2
-
25
4

∵S△BCD=S四边形ACDB-S△ABC
=S△AOC+S梯形OCDO'+S△BO′D-S△ABC
1×3
2
+
3+5
2
×4+
5×5
2
-
10×3
2
=15(1分)
设△PCM与△PDM中,边PM上的高分别为h1和h2,则
1当0<x≤42时,如图(1)S△PCD=S△CPM+S△DPM=
PM
2
(h1+h2)=
1
2
[(-
1
2
x-3)-(
1
3
x2-
8
3
x-3)]×4
=5
即2x2-13x+15=0
解得x1=
3
2
,x2=5>4(舍去)
∴P1
3
2
-
25
4
)(2分)
3当4<x<
13
2
时,如图(2)S△PCD=S△CPM-S△DPM=
PM
2
(h1-h2)=
1
2
[(-
1
2
x-3)-(
1
3
x2-
8
3
x-3)]×4
=5
即2x2-13x+15=0
解得x1=
3
2
<4(舍去),x2=5
∴P2(5,-8)(3分)
5当
13
2
<x<9
6时,如图(3)S△PCD=S△CPM-S△DPM=
PM
2
(h1-h2)=
1
2
[(
1
3
x2-
8
3
x-3)-(-
1
2
x-3)]×4
=5
即2x2-13x-15=0
解得x1=
15
2
,x2=-1<0(舍去)
∴P3
15
2
-
17
4

所有求点P的坐标是P1
3
2
-
25
4
)、P2(5,-8)或P3
15
2
-
17
4
)(4分)精英家教网
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知A点的坐标为(6,0),B是y轴正半轴上的一动点,直线AB交直线y=
1
2
x
于点C,矩形ADEF的顶点D、E分别在直线y=
1
2
x
和直线AB上,顶点F在x轴上.
(1)若点B的坐标为(0,4).
①求直线AB所表示的函数关系式;
②求△OAC的面积;
③求矩形ADEF的边DE与AD的长;
(2)若矩形ADEF是正方形,求B点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知A点的坐标为(0,3),⊙A的半径为1,点B在x轴上.
①若点B的坐标为(4,0),⊙B的半径为3,试判断⊙A与⊙B的位置关系;
②能否在x轴的正半轴上确定一点B,使⊙B与y轴相切,并且与⊙A相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知P点的坐标是(a,b),则sinα等于(  )

查看答案和解析>>

科目:初中数学 来源:2013届江苏省如皋市石庄初级中学九年级上学期期中考试数学试卷(带解析) 题型:解答题

如图所示,已知A点的坐标为(0,3),⊙A的半径为1,点B在轴上.

①若点B的坐标为(4,0),⊙B的半径为3,试判断⊙A与⊙B的位置关系;
②能否在轴的正半轴上确定一点B,使⊙B与y轴相切,并且与⊙A相切?请说明理由.

查看答案和解析>>

同步练习册答案