【题目】如图,在△ABC中,AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,求△ADE的周长;
(2)若∠BAC=130°,求∠DAE的度数.
【答案】(1)10;(2)80°
【解析】
(1)根据线段垂直平分线的性质可得AD=BD,AE=CE,进而可得△ADE的周长=BC;
(2)由AD=BD,AE=CE,可得∠B=∠BAD,∠C=∠CAE,又由∠BAC=130°,可得∠BAD+∠CAE=∠B+∠C=50°,进而求得答案.
解:(1)∵在△ABC中,AB、AC的垂直平分线分别交BC于D、E,
∴AD=BD,AE=CE,
又∵BC=10,
∴△ADE周长为:AD+DE+AE=BD+DE+EC=BC=10;
(2)∵AD=BD,AE=CE,
∴∠B=∠BAD,∠C=∠CAE,
又∵∠BAC=130°,
∴∠B+∠C=180°﹣∠BAC=50°,
∴∠BAD+∠CAE=∠B+∠C=50°,
∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=130°﹣50°=80°.
科目:初中数学 来源: 题型:
【题目】解决概率计算问题,可以直接利用模型,也可以转化后再利用模型.
请解决以下问题:
(1)如图,一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖形状、大小完全相同),则宝物藏在阴影砖下的概率是多少?
(2)在1~9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:
请根据表中数据,估计构成钝角三角形的概率是多少(精确到百分位)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) | 0 | 1 | 2 | 3 | … |
油箱剩余油量Q(L) | 100 | 94 | 88 | 82 | … |
①根据上表的数据,请你写出Q与t的关系式;
②汽车行驶5h后,油箱中的剩余油量是多少?
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.
(1)该民营企业从外地购得A、B两种商品各多少件?
(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(复习旧知)
结合数轴与绝对值的知识回答下列问题:
数轴上表示4和1的两点之间的距离是3:而│4-1│=3;表示-3和2两点之间的距离是5:而│-3-2│=5;表示-4和-7两点之间的距离是3,而│-4-(-7)│=3.
一般地,数轴上表示数m和数n的两点之间的距离公式为│m-n│.
(1)数轴上表示数-5的点与表示-2的点之间的距离为________;
(探索新知)
如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是化为求Rt△ABC或Rt△DEF的斜边长.
下面:以求DE为例来说明如何解决.
从坐标系中发现:D(-7,5),E(4,-3).所以DF=│5-(-3)│=8,EP=│4-(-7)│=11,所以由匀股定理可得:DE=.
(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,y1,x2,y2表示:
AC=____________,BC=____________,AB=____________.
得出的结论被称为“平面直角坐标系中两点间距离公式”.
(学以致用)
请用此公式解决如下题目:
(3)已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com