【题目】如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D为AC边上的动点,点D从点C出发,沿边CA向A运动,当运动到点A时停止,若设点D运动的速度为每秒1个单位长度,当运动时间t为多少秒时,以点C、B、D为顶点的三角形是等腰三角形?
【答案】解:∵∠ABC=90°,AB=4,BC=3,
∴AC= =5,
分三种情况:
①CD=BD时,∠C=∠DBC,
∵∠C+∠A=∠DBC+∠DBA=90°,
∴∠A=∠DBA,
∴BD=AD,
∴CD=AD= AC=2.5,即t=2.5;
②当CD=BC时,CD=3,即t=3;
③当BD=BC时,过点B作BF⊥AC于F,如图所示:
则CF=DF,△ABC的面积= ABBC= ACBF,
∴BF= =2.4,
∴CF= = =1.8,
∴CD=3.6,即t=3.6.
综上所述:当运动时间t为2.5或3或3.6秒时,以点C、B、D为顶点的三角形是等腰三角形.
【解析】根据已知条件,利用勾股定理求出AC的长,要判断以点C、B、D为顶点的三角形是等腰三角形,分三种情况讨论:①CD=BD时,∠C=∠DBC,②当CD=BC时③当BD=BC时,分别求出运动时间t的值即可。
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )
A.7cm
B.10cm
C.12cm
D.22cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.
(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】补全证明过程,即在横线处填上遗漏的结论或理由. 已知:如图,∠1=∠2,∠C=∠D.
求证:∠A=∠F.
证明:∵∠1=∠2(已知)
又∠1=∠DMN()
∴∠2=∠(等量代换)
∴DB∥EC()
∴∠C=∠ABD()
∵∠C=∠D(已知)
∴∠D=∠ABD()
∴(内错角相等,两直线平行)
∴∠A=∠F()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;
(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程x2-4x-1=0配方后可变形成( )
A. (x+2)2=3 B. (x-2)2=3 C. (x+2)2=5 D. (x-2)2=5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com