精英家教网 > 初中数学 > 题目详情

菱形ABCD的对角线交于O点,AC=16cm,BD=12cm.求菱形ABCD的高.

解:作DE⊥AB于E.
∵ABCD是菱形,AC=16,BD=12,
∴AC⊥BD,OB=6,OA=8.
∴AB=10.
∵面积S=AC•BD=AB•DE,
×16×12=10×DE,
∴DE=9.6(cm).
即菱形ABCD的高为9.6cm.
分析:已知对角线的长,可求边长和面积.根据菱形面积的两种表达方法得方程求解.
点评:本题考查的是菱形的面积求法及菱形性质的综合.菱形的面积有两种求法:
(1)利用底乘以相应底上的高;
(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.
具体用哪种方法要看已知条件来选择.
看到菱形,要充分联想到它具有的边,角,对角线的性质,并把它们和其他的已知条件进行综合分析从而求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知菱形ABCD的对角线AC、BD相交于O,若OA=3cm,BD=4cm,则菱形的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2
3
cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.
(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
①当t为何值时,点P、M、N在一直线上?
②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DA的中点,求证:E,F,G,H四个点在以O为圆心的同一个圆上.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.
(1)找出图中与全等的三角形,并说明理由;
(2)猜想三条线段PC、PE、PF之间的比例关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,请说明四边形OCED是矩形.

查看答案和解析>>

同步练习册答案