精英家教网 > 初中数学 > 题目详情

已知:如图,图A、图B分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为SA、SB(网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.

(1)求两阴影部分的面积之比SA∶SB

(2)请在图C的网格上画出一个面积为8个平方单位的中 心对称图形.

答案:
解析:

(1)9∶11;(2)略


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点O为等腰直角三角形ABC的重心,∠CAB=90°,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.
(1)当直线m与BC平行时(如图1),请你猜想线段BE、CF和AD三者之间的数量关系并证明;
(2)当直线m绕点O旋转到与BC不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF三者之间又有怎样的数量关系?请写出你的结论,不需证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G->C->D->E->F->H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有(  )
①图1中的BC长是8cm,②图2中的M点表示第4秒时y的值为24cm2
③图1中的CD长是4cm,④图2中的N点表示第12秒时y的值为18cm2
精英家教网
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•房山区二模)探究问题:
已知AD、BE分别为△ABC 的边BC、AC上的中线,且AD、BE交于点O.
(1)△ABC为等边三角形,如图1,则AO:OD=
2:1
2:1

(2)当小明做完(1)问后继续探究发现,若△ABC为一般三角形(如图2),(1)中的结论仍成立,请你给予证明.
(3)运用上述探究的结果,解决下列问题:
如图3,在△ABC中,点E是边AC的中点,AD平分∠BAC,AD⊥BE于点F,若AD=BE=4.求:△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

探索三角形的内角与外角平分线:
(1)已知,如图1,在△ABC中,两内角平分线,BO平分∠ABC,CO平分∠ACB,若∠A=50°,则∠BOC=
115°
115°
;此时∠A与∠BOC有怎样的关系,试说明理由.
(2)已知,如图2,在△ABC中,一内角平分线BO平分∠ABC,一外角平分线CO平分∠ACE,若∠A=50°,则∠BOC=
25°
25°
;此时∠A与∠BOC有怎样的关系,试说明理由.
(3)已知,如图3,在△ABC中,∠ABC、∠ACB的外角平分线OB、OC相交于点O,若∠A=50°,则∠BOC=
65°
65°
;此时∠A与∠BOC有怎样的关系(不需说明理由)

图1中:关系式:
∠BOC=90°+
1
2
∠A
∠BOC=90°+
1
2
∠A
,理由:

图2中:关系式:
∠BOC=
1
2
∠A
∠BOC=
1
2
∠A
,理由:

图3中:关系式:
∠BOC=90°-
1
2
∠A
∠BOC=90°-
1
2
∠A
,理由:

查看答案和解析>>

科目:初中数学 来源:北京模拟题 题型:解答题

已知:如图,矩形OABC的两边OA、OC分别在x轴,y轴的正半轴上,且点B的坐标为(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中点D的坐标为(1,3)。
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由。

查看答案和解析>>

同步练习册答案