精英家教网 > 初中数学 > 题目详情

(1) X2-7=0
(2) X3+27=0
(3) (x-3)2=64
( 4) (2x-1)3=-8

解:(1)∵x2=7,
∴x=±

(2)∵x3=-27
∴x=-3;

(3)∵(x-3)2=64
∴x-3=±8
∴x=11或-5;

(4)∵(2x-1)3=-8
∴2x-1=-2
∴x=-
分析:(1)首先移项求得x2的值,再根据平方根的定义即可求解;
(2)首先移项求得x3的值,再根据立方根的定义即可求解;
(3)根据平方根的定义即可求解;
(4)根据立方根的定义即可求解.
点评:此题主要考查平方根、立方根的定义,主要利用了立方根、平方根的定义解高次方程,其方法就是通过开方转化为一元一次方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、因式分解:①m2a-4ma+4a       ②x2(x-y)+(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:

下列方程中,一元二次方程共有(  )
①3x2+x=20 ②x+y=0 ③
2
x
=1 ④x2=1  ⑤x2+
x
3
=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,然后解决问题:

已知:一次函数和反比例函数,求这两个函数图象在同一坐标系内的交点坐标。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解这个方程得:x1=-2  x2=4

经检验,x1=-2 x2=4是原方程的根

当x1=-2,y1=4;x2=4,y2=-2

∴交点坐标为(-2,4)和(4,-2)

问题:

1.在同一直角坐标系内,求反比例函数y=的图象与一次函数y=x+3的图象的交点坐标;

2.判断一次函数y=2x-3的图象与反比例函数y=-的图象在同一直角坐标系内有无交点,说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2010年江西省抚州市临川区初一第一学期期末数学卷 题型:解答题

用适当的方法解下列方程(8分)

⑴2(x+2)2-8=0                     ⑵

⑶3(x-5)2=2(5-x)        ⑷x2+5=2x

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

解方程 
①x2+2x-3=0(用配方法)       
②2x2+5x-1=0(用公式法)

查看答案和解析>>

同步练习册答案