精英家教网 > 初中数学 > 题目详情
(2000•嘉兴)如图,等腰直角三角形ABC的腰长是2,∠ABC=Rt∠,以AB为直径作半圆O,M是BC上一动点(不运动至点B、C,过点M引半圆O的切线,切点是P.过点A作AB的垂线AN,交切线MP于点N,AC与ON,MN分别交于点E,F,设BM=x,
(1)证明:∠MON是直角;
(2)求y关于x的函数关系式及自变量x的取值范围;当∠CMF=120°时,求y的值;
(3)当F、M、C为顶点的三角形与△AEO相似时,求∠CMF的度数.

【答案】分析:(1)连接OP,根据切线长定理和切线的性质定理,易得∠AON=∠PON,同理可得∠POM=∠BOM,于是得到∠AON+∠BOM=∠PON+∠POM,可知∠MON是直角;
(2)由于三角形周长的比等于相似比,所以将转化为y==,AN与BM的比例关系可通过证△AON和BMO相似求得;
(3)本题要分两种情况进行讨论:
①∠AON与∠CMF对应相等,那么∠AOP=2∠CMF,根据∠POB+∠FMB=180°,即可求出∠CMF的度数;
②∠AON与∠CFM对应相等,那么∠POE=∠PFE,两角都加上一个对顶角后可得出∠AEO为直角,那么∠AON和∠CFM均为45°,由此可得出∠CMF的度数.
解答:(1)证明:连接OP,根据切线长定理和切线的性质定理,
得∠AON=∠PON,同理可得∠POM=∠BOM,
两式相加得∠AON+∠BOM=∠PON+∠POM=180°×=90°,
∠MON是直角;

(2)解:∵∠MON=90°
∴∠NOA+∠MOB=90°
又∠NOA+∠ANO=90°
∴∠ANO=∠MOB
∴△ANO∽△BOM
,即AN•BM=1,AN=
∵AN∥BC
∴y====-x2+2x(0<x<2)
因为∠CMF=120°,∠PMB=60°
所以∠OMB=30°,BM=OB=
即x=
∴y=2-3;

(3)解:∵∠CAB=∠C=45°,因此分两种情况讨论:
①∠CMF=∠AOE,△AOE∽△CMF
易知∠AON=∠NOP=∠CMF,
∴∠POB=180°-2∠CMF,∠FMB=180°-∠CMF
∵∠BMF+∠POB=180°
∴180°-2∠CMF+180°-∠CMF=180°
∴∠CMF=60°;
②∠CFM=∠AEO,△CFM∽△AOE,
易知∠PON=∠AON=∠CFM
∴∠PFE=∠POE
∵∠OPF=90°
∴∠OEF=90°
∴∠AON=∠CFM=45°
∴∠CMF=90°.
点评:本题主要考查了切线的性质、切线长定理、等腰直角三角形的性质、相似三角形的判定和性质等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源:2000年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2000•嘉兴)如图,等腰直角三角形ABC的腰长是2,∠ABC=Rt∠,以AB为直径作半圆O,M是BC上一动点(不运动至点B、C,过点M引半圆O的切线,切点是P.过点A作AB的垂线AN,交切线MP于点N,AC与ON,MN分别交于点E,F,设BM=x,
(1)证明:∠MON是直角;
(2)求y关于x的函数关系式及自变量x的取值范围;当∠CMF=120°时,求y的值;
(3)当F、M、C为顶点的三角形与△AEO相似时,求∠CMF的度数.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:填空题

(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是   

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:选择题

(2000•嘉兴)如图,在△ABC中,∠ABC=Rt∠,从AC上一点D引BC的垂线,垂足是E.已知DE=2.5,CE=4,CB=20,则AB等于( )

A.7.5
B.10
C.12.5
D.5

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《圆》(04)(解析版) 题型:填空题

(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是   

查看答案和解析>>

同步练习册答案