精英家教网 > 初中数学 > 题目详情
(1)已知二次函数y=ax2+bx+c(a≠0)的图象过A(2,0)、B(12,0),且y的最大值为50,求这个二次函数的解析式;
(2)抛物线顶点P(2,1),且过A(-1,10),求抛物线的解析式.
y=-2(x-2)(x-12)=-2x2+28x-48;y=(x-2)2+1=x2-4x+5.

试题分析:(1)先根据抛物线的对称性确定顶点坐标,由于已知抛物线与x轴的两交点坐标,则可设交点式y=a(x-2)(x-12),然后把顶点坐标代入求出a的值即可;
(2)由于已知顶点坐标,可设顶点式,然后把A点坐标代入求出a的值即可.
试题解析:
解:(1)∵二次函数的图象过A(2,0)、B(12,0),
∴抛物线的对称轴为直线x=7,
∴抛物线的顶点坐标为(7,50),
设抛物线的解析式为y=a(x-2)(x-12),
把(7,50)代入得a×5×(-5)=50,
解得a=-2,
∴二次函数的解析式为
(2)设抛物线的解析式为y=a(x-2)2+1,
把A(-1,10)代入得9a+1=10,
解得a=1,
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数图象的形状与y=3x2相同,且它的顶点坐标是,该解析式为             

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与直线交于点O(0,0),A(,12),点B是抛物线上O,A之间的一个动点,过点B分别作轴、轴的平行线与直线OA交于点C,E.

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(),求出之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是(     )
 
A.二次函数图像与x轴交点有两个
B.x≥2时y随x的增大而增大
C.二次函数图像与x轴交点横坐标一个在-1~0之间,另一个在2~3之间
D.对称轴为直线x=1.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).

(1)b=    ,点B的横坐标为    (上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为
(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有    个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线经过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于轴对称.轴,,最低点轴上,高,则右轮廓线所在抛物线的函数解析式为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案