精英家教网 > 初中数学 > 题目详情

【题目】如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.

(1)求证:AE是⊙O的切线;
(2)已知点B是EF的中点,求证:△EAF∽△CBA.
(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.

【答案】
(1)

证明:如图1,连接CD,

∵AC是⊙O的直径,

∴∠ADC=90°,

∴∠ADB+∠EDC=90°,

∵∠BAC=∠EDC,∠EAB=∠ADB,

∴∠EAC=∠EAB+∠BAC=90°,

∴EA是⊙O的切线.


(2)

证明:如图2,连接BC,

由(1)知,∠EAF=∠EAC=90°,

∵B是EF的中点,

∴在Rt△EAF中,AB=BF(直角三角形斜边的中线等于斜边的一半),

∴∠BAC=∠AFE,

∴△EAF∽△CBA.


(3)

解:∵△EAF∽△CBA,

∵AF=4,CF=2.

∴AC=6,EF=2AB,

,解得AB=2

∴EF=4

在Rt△AEF中,由勾股定理得,AE= =4


【解析】(1)连接CD,由AC是⊙O的直径,可得出∠ADC=90°,由角的关系可得出∠EAC=90°,即得出EA是⊙O的切线,(2)连接BC,由AC是⊙O的直径,可得出∠ABC=90°,由在Rt△EAF中,B是EF的中点,可得出∠BAC=∠AFE,即可得出△EAF∽△CBA,(3))由△EAF∽△CBA,可得出 ,由比例式可求出AB,由勾股定理得出AE的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A(m,m+1),B(m+3,m﹣1)都在反比例函数 的图象上.

(1)求m,k的值;
(2)求直线AB的函数表达式;
(3)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,直接写出点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(2017﹣ 0× ﹣( 1﹣4cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰△ABC的顶角∠A=36°(如图).
(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);
(2)证明:△ABC∽△BDC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是(
A.△PAB∽△PCA
B.△PAB∽△PDA
C.△ABC∽△DBA
D.△ABC∽△DCA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y= 的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).
(1)求一次函数和反比例函数的解析式;
(2)现有一直线l与直线y=kx+b平行,且与反比例函数y= 的图象在第一象限有且只有一个交点,求直线l的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+b(b>0)与抛物线 相交于点A(x1 , y1),B(x2 , y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.

(1)求b的值;
(2)求证:点(y1 , y2)在反比例函数 的图象上;
(3)求证:x1OB+y2OA=0.

查看答案和解析>>

同步练习册答案