精英家教网 > 初中数学 > 题目详情

问题:你能比较20112012和20122011的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的-般形式,即比较nn+1和(n+1)n的大小(n是正整数),然后,我们从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(填“<”“>”或“=”):
①12______21;②23______32;③34______43
④45______54;⑤56______65;…
(2)将题(1)的结果进行归纳,可以猜想出nn+1和(n+1)n的大小关系是______;
(3)根据上面归纳猜想后得到的一般结论,试比较下列两个数的大小:20112012______20122011

解:(1)①12=1,21=2;
②23=8,32=9;
③34=81,43=64;
④45=1024,54=625;⑤56=15625,65=7776;…

(2)当n<3时,nn+1<(n+1)n
当n≥3时,nn+1>(n+1)n

(3)∵2011>3,
∴20112012>20122011
故答案为:(1)<;<;>;>;>;(2)当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n;(3)>.
分析:(1)根据有理数的乘方的定义分别进行计算即可得解;
(2)根据(1)的计算结果分情况解答;
(3)根据(2)的结论解答即可.
点评:本题考查了有理数的乘方,有理数的大小比较,理解有理数的乘方的意义准确计算是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、问题:你能比较两个数20022003与20032002的大小吗?为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格中填“<”“>”“=”)
①12<21②23<32③34>43④45>54
⑤56>65⑥66>75
(2)从第(1)题的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系;
(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:20022003>20032002

查看答案和解析>>

科目:初中数学 来源: 题型:

22、问题:你能比较20092010和20102009的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.
(1)通过计算,比较下列各组数字大小
①12
21②23
32③34
43
④45
54⑤54
65⑥67
76

(2)把第(1)题的结果经过归纳,你能得出什么结论?
(3)根据上面的归纳猜想得到的结论,试比较两个数的大小:
20092010
20102009(填“>”、“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20062007与20072006的大小吗?为了解决问题,首先把它抽象成数学问题,写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后,从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(填“>”,“<”,“=”)
①12
21; ②23
32;③34
43;④45
54;⑤56
65; …
(2)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20062007
20072006
(3)从第(1)题的结果经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20122013和20132012的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数),然后我们从分析n=1,n=2,n=3,…这些简
单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小:
①12
21
②23
32
③34
43
④45
54
⑤56
65 
⑥67
76

(2)从第(1)题的结果经过归纳,可以猜想出nn+1和(n+1)n(n≥3)的大小关系式是
nn+1>(n+1)n
nn+1>(n+1)n

(3)根据上面归纳猜想得到的一般结论,试比较两个数的大小:20122013
20132012(填”>”,”<”,“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20122013与20132012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(即是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小
①12
21  ②23
32    ③34
43    ④45
54
⑤56
65  ⑥67
76
(2)从第(1)题的结果经过归纳,可以猜想nn+1和(n+1)n的大小关系;
(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小:20122013
20132012

查看答案和解析>>

同步练习册答案