【题目】如图,一次函数y=-x+b与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).
(1)求一次函数和反比例函数的解析式;
(2)点P(x,y)是直线AB上在第一象限内的一个点,过点P作PD⊥x轴于点D,连接OP,令△POD的面积为S,当S>时,直接写出点P横坐标x的取值范围.
【答案】(1)y=,y=-x+4;(2)1<x<3
【解析】
(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.
(2)根据反比例函数的比例系数k的几何意义可知:第一象限内,反比例函数上任意一点向x轴所作的垂线段与x轴及其与原点的连线围成的直角三角形的面积为,当S>时,P点应在反比例函数图象的上方,及在线段AB上(不包括A、B两点),由此可得解.
(1)把B(3,1)代入y=中,得k=3.
把A(m,3)代入y=中,得m=1.
把B(3,1)代入y=-x+b中,得b=4.
∴y=,y=-x+4.
(2)根据反比例函数的比例系数k的几何意义可知:第一象限内,反比例函数上任意一点向x轴所作的垂线段与x轴及其与原点的连线围成的直角三角形的面积为,当S>时,P点应在反比例函数图象的上方,及在线段AB上(不包括A、B两点).
∵A(1,3),B(3,1)
∴x的取值范围为:1<x<3.
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏)设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.
(1)若所用铁栅栏的长为40米,写出y与x的函数关系式,并求出自变量x的取值范围:
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
(3)在(2)的条件下,请直接写出当矩形场地的面积大于192平方米时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中作图:①分别以点B,C为圆心,BC长为半径画弧,分别交AD于点H,G;②分别以点B,C为圆心,大于BC的一半长为半径画弧,两弧相交于点E,F;③作直线EF,交AD于点P.下列结论不一定成立的是( )
A.BC=BHB.CG=AD
C.PB=PCD.GH=2AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作发现)
如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;
(2)在(1)所画图形中,∠AB′B=____.
(问题解决)
(3)如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.
小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;
想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…
请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程.
(1)求证:无论k取什么实数值,这个方程总有实数根;
(2)当=3时,△ABC的每条边长恰好都是方程的根,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com