精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.

(Ⅰ)AC的长等于_____

(Ⅱ)在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____

【答案】5 见解析

【解析】

(1)由勾股定理即可求解;(2)寻找格点MN,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MNAC的交点即为所求D.

(1)AC=

(2)如图,连接格点MN,由图可知:

AB=AM=4,

BC=AN=

AC=MN=

∴△ABC≌△MAN,

∴∠AMN=∠BAC,

∴∠MAD+∠CAB=∠MAD+∠AMN=90°,

∴MN⊥AC,

易解得△MANMN为底时的高为

∵AB2=ADAC,

∴AD=AB2÷AC=

综上可知,MNAC的交点即为所求D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校根据课程设置要求,开设了数学类拓展性课程. 为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整). 请根据图中信息回答问题:

1)求的值.

2)补全条形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知分别为的直径和弦, 的中点,垂直于的延长线于,连接,若,下列结论一定错误的是( )

A. DE是⊙O的切线 B. 直径AB长为20cm

C. AC长为16cm D. C 的中点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下列四个结论,其中正确的结论为(

A. 等边三角形既是轴对称图形,又是中心对称图形

B. 对角线相等的四边形是矩形

C. 三角形的外心到三个顶点的距离相等

D. 任意三个点都可确定一个圆

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.

(1)求证:∠ACD=∠B;

(2)如图(2),∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线经过正方形的顶点,先分别过此正方形的顶点于点于点.然后再以正方形对角线的交点为端点,引两条相互垂直的射线分别与交于两点.若,则线段长度的最小值是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PBPE,连接PDOAC中点.

(1)如图1,当点P在线段AO上时,试猜想PEPD的数量关系和位置关系,不用说明理由;

(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;

(3)如图3,当点PAC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4.

1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2

2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点,直线轴于点

(1)求直线的表达式和点的坐标;

(2)在直线上有一点,使得的面积为4,求点的坐标.

查看答案和解析>>

同步练习册答案