精英家教网 > 初中数学 > 题目详情
10、如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为(  )
分析:已知证△ABD≌△CAE,在结合三角形全等性质可得.DE=AE-AD=BD-CE=6-2=4.
解答:解:∵BD⊥AE于D,
∴∠BAD=90°-∠ABD,
∠CAE+∠DAB=∠BAC=90°,
∴∠BAD=90°-∠CAE,
∴∠ABD=∠CAE.
又∠ADB=∠CEA,AB=CA,
∴△ABD≌△CAE,
∴AD=CE.
DE=AE-AD=BD-CE=6-2=4.
故选D
点评:本题考查了直角三角形全等的判定方法;根据三角形全等,将DE转化为BD和CE的差来解答.利用等角的余角相等是证明全等的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案