
(1)解:AB=CD,
理由是:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,
∵∠APM=∠CPM,∠APM=∠BPN,∠CPM=∠DPN,
∴∠BPN=∠DPN,
∵OE⊥AB,OF⊥CD,
∴OE=OF,
在Rt△BEO和Rt△DOF中,OF=OE,OD=OB,由勾股定理得:BE=DF,
∵OF⊥CD,OE⊥AB,
OF、OE过O,
∴由垂径定理得:CD=2DF,AB=2BE,
∴AB=CD.
(2)AB=CD成立,
证明:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,
∵∠APM=∠CPM,
∴OE=OF,
在Rt△BEO和Rt△DOF中,OF=OE,OD=OB,由勾股定理得:BE=DF,
∵OF⊥CD,OE⊥AB,
OF、OE过O,
∴由垂径定理得:CD=2DF,AB=2BE,
∴AB=CD.
分析:(1)根据角平分线性质求出OE=OF,根据勾股定理求出BE=DF,根据垂径定理求出AB=2BE,CD=2DF,即可得出答案;
(2)根据角平分线性质求出OE=OF,根据勾股定理求出BE=DF,根据垂径定理求出AB=2BE,CD=2DF,即可得出答案.
点评:本题考查了勾股定理,角平分线性质,垂径定理的应用,主要考查学生运用定理进行推理的能力.