20£®ÔĶÁÏÂÃæµÄÎÄ×Ö£¬½â´ðÎÊÌ⣮
´ó¼ÒÖªµÀ$\sqrt{2}$ÊÇÎÞÀíÊý£¬¶øÎÞÀíÊýÊÇÎÞÏÞ²»Ñ­»·Ð¡Êý£®Òò´Ë£¬$\sqrt{2}$µÄСÊý²¿·Ö²»¿ÉÄÜÈ«²¿µØд³öÀ´£¬µ«¿ÉÒÔÓÃ$\sqrt{2}$-1À´±íʾ$\sqrt{2}$µÄСÊý²¿·Ö£®ÀíÓÉ£ºÒòΪ$\sqrt{2}$µÄÕûÊý²¿·ÖÊÇ1£¬½«Õâ¸öÊý¼õÈ¥ÆäÕûÊý²¿·Ö£¬²î¾ÍÊÇСÊý²¿·Ö£®Çë½â´ð£º
ÒÑÖª£º2+$\sqrt{6}$µÄСÊý²¿·ÖΪa£¬5-$\sqrt{6}$µÄСÊý²¿·ÖΪb£¬¼ÆËãa+bµÄÖµ£®

·ÖÎö ÓÉ2£¼$\sqrt{6}$£¼3¼´¿ÉµÃ³öa=$\sqrt{6}$-2¡¢b=3-$\sqrt{6}$£¬½«ÆäÏà¼Ó¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¡ß2=$\sqrt{4}$£¼$\sqrt{6}$£¼$\sqrt{9}$=3£¬
¡àa=2+$\sqrt{6}$-4=$\sqrt{6}$-2£¬b=5-$\sqrt{6}$-2=3-$\sqrt{6}$£¬
¡àa+b=$\sqrt{6}$-2+3-$\sqrt{6}$=1£®

µãÆÀ ±¾Ì⿼²éÁ˹ÀËãÎÞÀíÊýµÄ´óС£¬¸ù¾Ý$\sqrt{6}$µÄ·¶Î§ÕÒ³öa¡¢bÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¡ÏDACÊÇ¡÷ABCµÄÒ»¸öÍâ½Ç£®
ʵ¼ùÓë²Ù×÷£º
¸ù¾ÝÒªÇó³ß¹æ×÷ͼ£¬²¢ÔÚͼÖбêÃ÷ÏàÓ¦×Öĸ£¨±£Áô×÷ͼºÛ¼££¬²»Ð´×÷·¨£©£®
£¨1£©×÷¡ÏDACµÄƽ·ÖÏßAM£»
£¨2£©×÷Ï߶ÎACµÄ´¹Ö±Æ½·ÖÏߣ¬ÓëAM½»ÓÚµãF£¬ÓëBC±ß½»ÓÚµãE£¬Á¬½ÓAE¡¢CF
£¨3£©ÈôAE=5£¬EF=8£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®½«Ò»Ö±¾¶Îª17cmµÄÔ²ÐÎֽƬ£¨Èçͼ1£©¼ô³ÉÈçͼ2ËùʾÐÎ×´µÄֽƬ£¬ÔÙ½«Ö½Æ¬ÑØÐéÏßÕÛµþµÃµ½Õý·½Ì壨Èçͼ3£©ÐÎ×´µÄÖ½ºÐ£¬ÔòÕâÑùµÄÖ½ºÐµÄ×î´óÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¾ø¶ÔÖµµÈÓÚ12µÄÓÐÀíÊýÓÐ12»ò-12£®£¨Ìáʾ£ºÒªÌîÍêÕûÓ´£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ1£¬ÒÑÖª¡ÏABC=90¡ã£¬¶¯µãPÔÚÉäÏßBCÉÏ£¨µãPÓëµãB²»Öغϣ©Òƶ¯£¬¡÷ABEÓë¡÷APQ¾ùÊǵȱßÈý½ÇÐΣ¬Á¬½áQE²¢ÑÓ³¤½»ÉäÏßBCÓÚµãF£®
£¨1£©Èçͼ2£¬µ±BP=BAʱ£¬¡ÏEBF=30¡ã£¬²ÂÏë¡ÏQFC=60¡ã£»
£¨2£©Èçͼ1£¬µ±µãPΪÉäÏßBCÉÏÈÎÒâÒ»µãʱ£¬²ÂÏë¡ÏQFCµÄ¶ÈÊý£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©ÒÑÖªÏ߶ÎAB=2$\sqrt{3}$£¬ÉèBP=x£¬µãQµ½ÉäÏßBCµÄ¾àÀëΪy£¬ÇëÓú¬xµÄ´úÊýʽ±íʾy£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬DΪBC±ßÉϵÄÒ»¶¯µã£¨Dµã²»ÓëB¡¢CÁ½µãÖغϣ©£®DE¡ÎAC½»ABÓÚEµã£¬DF¡ÎAB½»ACÓÚFµã£®
£¨1£©ÏÂÁÐÌõ¼þÖУº¢ÙAB=AC£»¢ÚADÊÇ¡÷ABCµÄÖÐÏߣ»¢ÛADÊÇ¡÷ABCµÄ½Çƽ·ÖÏߣ»¢ÜADÊÇ¡÷ABCµÄ¸ß£¬ÇëÑ¡ÔñÒ»¸ö¡÷ABCÂú×ãµÄÌõ¼þ£¬Ê¹µÃËıßÐÎAEDFΪÁâÐΣ¬²¢Ö¤Ã÷£»
´ð£ºÎÒÑ¡Ôñ¢Û£®£¨ÌîÐòºÅ£©
£¨2£©ÔÚ£¨1£©Ñ¡ÔñµÄÌõ¼þÏ£¬¡÷ABCÔÙÂú×ãÌõ¼þ£º¡ÏBAD=90¡ã£¬ËıßÐÎAEDF¼´³ÉΪÕý·½ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½âÏÂÁз½³Ì×飺
£¨1£©$\left\{\begin{array}{l}\frac{x+1}{5}-\frac{y-1}{2}=-1\\ x+y=2\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}8y+5x=2\\ 4y-3x=-10\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ã»ÓÐÁ¿½ÇÆ÷£¬ÀûÓÿ̶ȳ߻òÈý½Ç°åÒ²ÄÜ»­³öÒ»¸ö½ÇµÄƽ·ÖÏßÂð£¿ÏÂÃæÊÇС±òÓëСºìµÄ×÷·¨£¬ËûÃǵĻ­·¨ÕýÈ·Âð£¿Çë˵Ã÷ÀíÓÉ£®
£¨1£©Ð¡±òµÄ×÷·¨£º
¢ÙÈçͼ1£¬ÀûÓÿ̶ȳßÔÚ¡ÏAOBµÄÁ½±ßÉÏ£¬·Ö±ðÈ¡µãC£¬D£¬Ê¹OD=OC£»
¢ÚÁ¬½ÓCD£¬ÀûÓÿ̶ȳ߻­³öCDµÄÖеãE£»
¢Û»­ÉäÏßOE£®ÔòÉäÏßOEΪ¡ÏAOBµÄ½Çƽ·ÖÏߣ®

£¨2£©Ð¡ºìµÄ×÷·¨£º
¢ÙÈçͼ2£¬ÀûÓÃÈý½Ç°åÔÚ¡ÏAOBµÄÁ½±ßÉÏ£¬·Ö±ðÈ¡µãM£¬N£¬Ê¹OM=ON£»
¢Ú·Ö±ð¹ýµãM£¬N»­OM£¬ONµÄ´¹Ïߣ¬½»µãΪP£»
¢Û»­ÉäÏßOP£¬ÔòÉäÏßOPΪ¡ÏAOBµÄ½Çƽ·ÖÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ò»¸ö³¤·½ÐεÄÖܳ¤ÊÇ16cm£¬³¤±È¿í¶à2cm£¬ÄÇôËüµÄ¿íÊÇ3cm£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸