精英家教网 > 初中数学 > 题目详情
(2003•常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )

A.bc-ab+ac+b2
B.a2+ab+bc-ac
C.ab-bc-ac+c2
D.b2-bc+a2-ab
【答案】分析:可绿化部分的面积为=S长方形ABCD-S矩形LMPQ-S?RSTK+S重合部分
解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2
∴可绿化部分的面积为ab-bc-ac+c2
故选C.
点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.
用字母表示数时,要注意写法:
①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;
②在代数式中出现除法运算时,一般按照分数的写法来写;
③数字通常写在字母的前面;
④带分数的要写成假分数的形式.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2003•常州)如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?

查看答案和解析>>

科目:初中数学 来源:2003年江苏省常州市中考数学试卷(解析版) 题型:解答题

(2003•常州)如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《相交线与平行线》(01)(解析版) 题型:填空题

(2003•常州)如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则△ACE的面积为   

查看答案和解析>>

科目:初中数学 来源:2003年江苏省常州市中考数学试卷(解析版) 题型:解答题

(2003•常州)如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上
图中有______对四边形面积相等;
他们是______.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省常州市中考数学试卷(解析版) 题型:选择题

(2003•常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )

A.bc-ab+ac+b2
B.a2+ab+bc-ac
C.ab-bc-ac+c2
D.b2-bc+a2-ab

查看答案和解析>>

同步练习册答案