精英家教网 > 初中数学 > 题目详情
(2012•泉港区质检)如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE的函数解析式为(  )
分析:利用坐标系易得A、B、C三点的坐标,根据待定系数法就可以求出抛物线的解析式,再利用二次函数关于y轴对称的性质,即可得出答案.
解答:解:设左轮廓线ACB的抛物线解析式为y=ax2+bx+c(a≠0),
∵A(-5,1),B(-1,1),C(-3,0),
25a-5b+c=1
a-b+c=1
9a-3b+c=0

解得:
a=
1
4
b=
3
2
c=
9
4

∴左轮廓线ACB的抛物线解析式为:y=
1
4
x2+
3
2
x+
9
4

由左右两轮廓线关于y轴对称,y=
1
4
x2+
3
2
x+
9
4
=
1
4
(x+3)2
∴右轮廓线DFE的函数解析式为:y=
1
4
(x-3)2
故选:C.
点评:本题主要考查了待定系数法求抛物线的解析式,利用坐标系得出点的坐标,进而得出解析式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泉港区质检)下列计算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泉港区质检)如图,小刚把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形的纸帽(衔接处无缝隙且不重叠),则圆锥形纸帽的底面圆的半径是
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泉港区质检)先化简,再求值:(x-4)2+2x(x+4)-9,其中x=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泉港区质检)如图,A、B的坐标分别为(8,4),(0,4).点C从原点O出发以每秒1单位的速度沿着x轴的正方向运动,设运动时间为t(0<t<5).点D在x轴上,坐标为(t+3,0),过点D作x轴的垂线交AB于E点,交OA于G点,连接CE交OA于点F.
(1)填空:CD=
3
3
,CE=
5
5
,AE=
5-t
5-t
 (用含t的代数式表示);
(2)当△EFG的面积为
12
5
时,点G恰好在函数y=
k
x
第一象限的图象上.试求出函数y=
k
x
的解析式;
(3)设点Q的坐标为(0,2t),点P在(2)中的函数y=
k
x
的图象上,是否存在以A、C、Q、P为顶点的四边形是平行四边形?若存在,试求出点C、P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泉港区质检)(1)计算:5
2
+3
2
=
8
2
8
2

(2)如图,在△ABC中,BC=6,则中位线DE=
3
3

查看答案和解析>>

同步练习册答案