精英家教网 > 初中数学 > 题目详情
3.如图是一个圆柱体,则它的主视图是(  )
A.B.C.D.

分析 找到从物体的正面看,所得到的图形即可.

解答 解:一个直立在水平面上的圆柱体的主视图是长方形,
故选A

点评 此题考查三视图,关键是根据用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.计算:|-3|+(π+1)0-$\sqrt{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.设a,b,c是△ABC的三边长,二次函数y=(a-$\frac{b}{2}$)x2-cx-a-$\frac{b}{2}$在x=1时取最小值-$\frac{8}{5}$b,则sinA=$\frac{4}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,矩形ABCD中,P是边AD上的一动点,连接BP、CP,过点B作射线交线段CP的延长线于点E,交AD边于点M,且使得∠ABE=∠CBP,
如果AB=2,BC=5,AP=x,PM=y.
(1)说明△ABM∽△APB;并求出y关于x的函数关系式,写出自变量x的取值范围;
(2)当AP=4时,求sin∠EBP的值;
(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF.延长CD至G,使GD=EB,连接AG,易证△AFG≌△AFE.所以EF,BE,DF之间的数量关系为 EF=DF+BE.
(1)如图2,点E,F分别在正方形ABCD的边BC,CD的延长线上,∠EAF=45°,连接EF.试猜想EF,BE,DF之间的数量关系;(直接写出结果,不需证明)
(2)如图3,点E,F分别在正方形ABCD的边CB,DC的延长线上,∠EAF=45°,连接EF.试猜想EF,BE,DF之间的数量关系,并加以证明;
(3)如图4,点E,F在正方形ABCD的对角线BD上,∠EAF=45°,若BE=2,DF=1,请直接写出EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,点A、B、C、D、E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH=$\sqrt{10}$,CH=5$\sqrt{2}$.
(1)求证:AH是⊙O的切线;
(2)若点D是弧CE的中点,且AD交CE于点F,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图的坐标平面上,有一条通过点(-2,-3)的直线l.若四点(-2,a)、(0,b)、(c,0)、(d,-1)在l上,则下列数值判断正确是(  )
A.a=2B.b>-3C.c<-2D.d=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一根蜡烛高20cm,蜡烛高度 y(单位:cm)随燃烧的时间x(单位:分钟)的增加而减少,平均每分钟减少量为0.1cm/分钟.求y与x的函数关系式,并画出该函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形
几何点数
层数
三角形数正方形数五边形数六边形数
第一层几何点数1111
第二层几何点数2345
第三层几何点数3579
第六层几何点数6111621
第n层几何点数n2n-13n-24n-3
请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.

查看答案和解析>>

同步练习册答案