精英家教网 > 初中数学 > 题目详情
精英家教网如图,一次函数y=-
34
x+3的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为
 
,点B的坐标为
 

(2)求OC的长度;
(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.
分析:(1)令y=0求出x的值,再令x=0求出y的值即可求出A、B两点的坐标;
(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;
(3)根据x轴上点的坐标特点设出P点的坐标,再根据两点间的距离公式解答即可.
解答:解:(1)令y=0,则x=4;令x=0,则y=4,
故点A的坐标为(4,0),点B的坐标为(0,3).(每空1分)

(2)设OC=x,则AC=CB=4-x,
∵∠BOA=90°,
∴OB2+OC2=CB2
32+x2=(4-x)2,(2分)
解得x=
7
8

∴OC=
7
8
.(3分)

(3)设P点坐标为(x,0),
当PA=PB时,
(x-4)2
=
x2+9
,解得x=
7
8

当PA=AB时,
(x-4)2
=
42+32
,解得x=9或x=-1;
当PB=AB时,
x2+32
=
42+32
,解得x=-4.
∴P点坐标为(
7
8
,0),(-4,0),(-1,0),(9,0).(2分)
点评:此题比较复杂,考查的是坐标轴上点的坐标特点、勾股定理及两点间的距离公式,在解(2)时要注意分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案