精英家教网 > 初中数学 > 题目详情

【题目】如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分).设AE=BF=CG=DH=xcm,四边形EFGH的面积为ycm2

(1)求y关于x的函数表达式和自变量x的取值范围;
(2)求四边形EFGH的面积为3cm2时的x值;
(3)四边形EFGH的面积可以为1.5cm2吗?请说明理由.

【答案】
(1)解:∵在正方形纸上剪去4个全等的直角三角形,

∴∠AHE=∠DGH,∠DGH+∠DHG=90°,HG=HE,

∵∠EHG=180°﹣∠AHE﹣∠DHG,

∴∠EHG=90°,四边形EFGH为正方形,

在△AEH中,AE=x,AH=BE=AB﹣AE=2﹣x,∠A=90°,

∴HE2=AE2+AH2=x2+(2﹣x)2=2x2﹣4x+4,

正方形EFGH的面积y=HE2=2x2﹣4x+4,

∵AE,AH均为正值,

∴0<x<2,

故y关于x的函数表达式为:y=2x2﹣4x+4,自变量x的取值范围0<x<2.


(2)解:将y=3代入y=2x2﹣4x+4中,整理得:2x2﹣4x+1=0,

解得:x1=1+ ,x2=1﹣

故四边形EFGH的面积为3cm2时的x的值为1+ 或1﹣


(3)解:四边形EFGH的面积为:y=2x2﹣4x+4=2(x﹣1)2+2,(0<x<2),

∵(x﹣1)2≥0,

∴y≥2,

四边形EFGH的面积不能为1.5cm2


【解析】(1)先证出四边形EFGH为正方形,用未知数x表示其任一边长,根据正方形面积公式即可解决问题;(2)代入y值,解一元二次方程即可;(3)将面积y=2x2﹣4x+4改写成完全平方的形式,可得知y≥2,故不能为cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设边长为3的正方形的对角线长为a.下列关于a的四种说法: ①a是无理数;
②a可以用数轴上的一个点来表示;
③3<a<4;
④a是18的算术平方根.
其中,所有正确说法的序号是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点G是△ABC的重心,下列结论:① ;② ;③△EDG∽△CGB;④ .其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB、AC分别交于点D,E,DF⊥AC于点F.

(1)求证:点D是AB的中点;
(2)判断DF与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为20,cosB= ,求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为20 m,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠A=60°,AB=4 ,点P在菱形内,若PB=PD=4,则∠PDC的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣ax+6与x轴负半轴交于点A,与x轴的正半轴交于点B,且AB=7.

(1)如图1,求a的值;
(2)如图2,点P在第一象限内抛物线上,过P作PH∥AB,交y轴于点H,连接AP,交OH于点F,设HF=d,点P的横坐标为t,求d与t之间的函数关系式,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当PH=2d时,将射线AP沿着x轴翻折交抛物线于点M,在抛物线上是否存在点N,使∠AMN=45°,若存在,求出点N的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了多少名同学?
(2)条形统计图中,m= , n=
(3)扇形统计图中,热词B所在扇形的圆心角是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是(
A.BD:AB=CE:AC
B.DE:BC=AB:AD
C.AB:AC=AD:AE
D.AD:DB=AE:EC

查看答案和解析>>

同步练习册答案