精英家教网 > 初中数学 > 题目详情

【题目】如图,OD 是∠AOB 的平分线,∠AOC=2∠BOC.

(1)若 AO⊥CO,求∠BOD 的度数;

(2)若∠COD=21°,求∠AOB 的度数.

【答案】167.5, (2)126.

【解析】

1)由垂直可得AOC=90°,由AOC=2BOCBOC的度数,即可得AOB的度数,然后根据角平分线的定义可知AOD=BOD=,计算即可求出;

2)由AOC=2BOCAOB=3BOC ,然后根据角平分线的定义可知AOD=BOD=,再由COD=BOD-BOC =21°可先求得BOC,即可得AOB 的度数.

1AO

∵∠AOC=90°

∵∠AOC=2BOC

∴∠BOC=45°

∴∠AOB=AOC+BOC=135

OD平分AOB

∴∠BOD==67.5

2∵∠AOC=2BOC

∴∠AOB=AOC+BOC =3BOC

OD平分AOB

∴∠BOD=AOB= BOC

∴∠COD=BOD-BOC=BOC

∵∠COD=21

∴∠BOC=42°

∴∠AOB =3BOC = 126.

故答案为:(1)67.5, 2126.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式x﹣1.

(1)当m=1时,求该不等式的解集;

(2)m取何值时,该不等式有解,并求出解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形中,cm,cm,点的中点.若点 在线段上以1 cm/s的速度由点向点运动,到点时不动.同时,点在线段上由点向点运动.

(1)若点的运动速度与点的运动速度相等,经过1 s后,是否全等?请说明理由,并判断此时线段的位置关系;

(2)若点的运动速度与点的运动速度相等,运动时间为s,设的面积为cm2,请用含的代数式表示;

(3)若点的运动速度与点的运动速度不相等,当点的运动速度为多少时,能够使全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题9把代数式通过配凑等手段得到完全平方式再运用完全平方式是非负性这一性质增加问题的条件这种解题方法叫做配方法配方法在代数式求值解方程最值问题等都有着广泛的应用

例如:用配方法因式分解:a2+6a+8

原式=a2+6a+9-1

=a+32 –1

=a+3-1)(a+3+1

=a+2)(a+4

M=a2-2ab+2b2-2b+2利用配方法求M的最小值

a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1

=a-b2+b-12 +1

a-b20,(b-12 0

当a=b=1时M有最小值1

请根据上述材料解决下列问题:

1在横线上添上一个常数项使之成为完全平方式:a 2+4a+

2用配方法因式分解 a2-24a+143

3M=a2+2a +1M的最小值

4已知a2+b2+c2-ab-3b-4c+7=0a+b+c的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于 MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为4028,则△EDF的面积为(  )

A. 12 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC△DBE中,BC=BE,还需要添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是(

A. AC=DE,∠C=∠E B. BD=AB,AC=DE C. AB=DB,∠A=∠D D. ∠C=∠E,∠A=∠D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣ x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线y=﹣ x上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,则∠ECD的度数是( )

A.7°
B.21°
C.23°
D.24°

查看答案和解析>>

同步练习册答案