精英家教网 > 初中数学 > 题目详情

如图,正方形OABC和正方形DEFG是位似图形(其中点O,A,B,C的对应点分别是点D,E,F,G),点B的坐标为(1,1),点F的坐标为(4,2),则这两个正方形的位似中心的坐标是________.

(-2,0)或(
分析:根据两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.则位似中心就是两对对应点的延长线的交点,求出直线BF所在解析式即可.
解答:解:两个位似图形时,位似中心就是BF与x轴的交点,
设直线BF解析式为y=kx+b,将F(4,2),B(1,1)代入,得

解得:
即y=x+
令y=0得x=-2,
∴O′坐标是(-2,0);
同理O″坐标是().
故答案为:(-2,0),().
点评:本题主要考查位似图形的性质,根据每对位似对应点与位似中心共线得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为16,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴精英家教网的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(提示:考虑点P在点B的左侧或右侧两种情况)
(1)求B点坐标和k的值;
(2)当S=8时,求点P的坐标;
(3)写出S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形OABC、ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B、E在函数y=
4x
  (x>0)
的图象上.
(1)求正方形OABC的面积;
(2)求E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC和正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则E点的坐标是
5
+1
2
5
-1
2
5
+1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则OD=
2
2
,点E的坐标为
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y=
k
x
(k<0,x<0)的图象上,点P(m,n)是函数y=
k
x
(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、),轴的垂线,垂足分别为E、F.
(1)设矩形OEPF的面积为s1,求s1
(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为s2.写出s2与m的函数关系式,并标明m的取值范围.

查看答案和解析>>

同步练习册答案