分析 (1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,
(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.
解答 证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点,
∴BE=$\frac{1}{2}$AB,DF=$\frac{1}{2}$CD.
∴BE=DF,BE∥DF,
∴四边形DEBF是平行四边形,
∴DE∥BF;
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,
∴∠ADB=90°,
在Rt△ADB中
∵E为AB的中点,
∴AE=BE=DE,
∵四边形DEBF是平行四边形,
∴四边形DEBF是菱形.
点评 本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 只有小明对 | B. | 只有小亮对 | C. | 两人都对 | D. | 两人都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | h>0,k>0 | B. | h>0,k<0 | C. | h<0,k>0 | D. | h<0,k<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 18cm | B. | 16cm | C. | 15cm | D. | 12cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 56 | B. | 24 | C. | 64 | D. | 32 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com