精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,AB=DC,AC⊥BD于点O,过点A作AE⊥BC于点E,若BC=2AD=8,则tan∠ABE=__________。
3
过D点作DF∥AC交BC的延长线于点F,构造等腰直角三角形后求得AE的长和BE的长,利用锐角三角函数的定义求解即可.

解:过D点作DF∥AC交BC的延长线于点F,
∵AC⊥BD于点O,
∴BD⊥FD,
∵AD∥BC,
∴AD=CF,
∴BF=BC+CF=8+4=12,
∵AC=BD,
∴BD=DF,
∴AC=BD=12÷=6
∴AE==6,
∴tan∠ABE===3.
故答案为:3.
本题考查了等腰三角形的性质,解题的关键是正确的平移梯形的对角线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

(11·天水)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线
AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB
的最小值是_  ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•南充)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是(  )
A.1个B.2个
C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于          Cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•淮安)如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•舟山)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题8分)如图,四边形中,平分.

(1)求证:四边形是菱形;
(2)若点的中点,试判断的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图9,等腰梯形ABCD的边BCx轴上,点Ay轴的正方向上,A( 0, 6 ),D ( 4,6),且AB.

(1)求点B的坐标;
(2)求经过ABD三点的抛物线的解析式;
(3)在(2)中所求的抛物线上是否存在一点P

图9

 
使得?若存在,请求出该点坐标,

若不存在,请说明理由.

查看答案和解析>>

同步练习册答案