精英家教网 > 初中数学 > 题目详情

如图,△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为AB上的一点,过点P作BC的平行线交直线BT于点E,交AC于点F
(I)当点P在线段AB上时,(如图1),求证:PA•PB=PE•PF;
(II)当点P为线段BA的延长线上一点时(如图2),第(1)的结论还成立吗?如果成立请证明;如果不成立,请说明理由.
作业宝

(Ⅰ)证明:如图1,∵EB为⊙O的切线,
∴∠ACB=∠ABE,
∵EF∥BC,
∴∠AFP=∠ACB,故∠AFP=∠ABE.
由于∠APF=∠EPB,∴△APF∽△BPE,
=
∴PA•PB=PE•PF.

(Ⅱ)如图2,当点P在线段BA的延长线上时,(Ⅰ)的结论仍成立.
∵EB为⊙O的切线,
∴∠ACB=∠ABT,
∵EF∥BC,
∴∠ACB=∠ABT=∠AFP,
∴∠AFP=∠PBE.
再由∠BPE=∠FPA,可得△PAF∽△PEB,
=
∴PA•PB=PE•PF.
分析:(Ⅰ)利用圆周角、弦切角间的关系证明△APF∽△BPE,根据成比例线段证明 PA•PB=PE•PF 成立.
(Ⅱ)当点P在线段BA的延长线上时,(Ⅰ)的结论仍成立.先证明∠AFP=∠PBE,再由∠BPE=∠FPA,可得△PAF∽△PEB,根据成比例线段证明 PA•PB=PE•PF 成立.
点评:本题主要考查圆的相交弦及切线的性质,用三角形全等证明线段间的关系,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是锐角三角形,以BC为直径作⊙O,AD是⊙O的切线,从AB上一点E作AB的垂线交AC的延长线于F,若
AB
AF
=
AE
AC

求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是
①②③
①②③
.(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是BC边的中点,点E在AC的延长线上,且∠CDE=30°.若AD=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,则∠ABD=
120
120
度.

查看答案和解析>>

同步练习册答案