
分析:首先连接BD,由旋转的性质,易证得△ABD是等边三角形,继而可证得AE∥BD,则可证得△AEF∽△DBF,然后由相似三角形的对应边成比例,可求得DF=

a,继而求得答案.
解答:

解:连接BD.
设AB=a,则AD=AB=a,AC=AE=2a,BC=DE=

a,
∵在△ABD 中,∠BAD=60°,AB=AD,
∴△ABD是等边三角形.
∴BD=AB=a,∠ADB=60°,
又∵∠EAD=60°,
∴∠EAD=∠ADB,
∴AE∥BD,
∴△AEF∽△DBF,
∴

=2,
∴DF=

AD=

a,
∴tan∠EFD=

=

=3

.
故答案为:3

.
点评:此题考查了相似三角形的判定与性质、旋转的性质、等边三角形的判定与性质以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.