精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AD∥BC,BD=CD,∠BDC=90°,AD=3,BC=8.求AB的长.
分析:BD=CD,∠BDC=90°则△BDC是等腰直角三角形,过点D作DF⊥BC,则DF=
1
2
BC,并且DF是梯形的高线,过点A作AE⊥BC,则AE=DF,在直角△ABE中根据勾股定理,就可以求出AB的长.
解答:精英家教网解:作AE⊥BC于E,DF⊥BC于F.(1分)
∴AE∥DF,∠AEF=90°,
∵AD∥BC,
∴四边形AEFD是矩形.
∴EF=AD=3,AE=DF.(3分)
∵BD=CD,∠BDC=90°,
∴△BDC是等腰直角三角形,
又∵DF⊥BC,
∴DF是△BDC的BC边上的中线.
∴DF=
1
2
BC=BF=4.(4分)
∴AE=DF=4,BE=BF-EF=4-3=1.(6分)
在Rt△ABE中,AB2=AE2+BE2
∴AB=
42+12
=
17
.(8分)
点评:梯形的问题可以通过作高线,把梯形转化为直角三角形与矩形的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案