【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品50件.生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.
(1)设生产x件A种产品,写出其题意x应满足的不等式组;
(2)由题意有哪几种按要求安排A、B两种产品的生产件数的生产方案?请您帮助设计出来.
【答案】(1);(2)有3种生产方案:方案1:A产品30件,B产品20件;方案2:A产品31件,B产品19件;方案3:A产品32件,B产品18件.
【解析】分析:(1)设生产x件A种产品,则生产B产品(50﹣x)件,共需要甲种原料[9x+4(50﹣x)]千克,乙种原料[3x+10(50﹣x)]千克,根据题意就可以建立不等式组;
(2)求出(1)的不等式组的解集,就可以确定x的值,从而求出生产方案.
详解:(1)设生产x件A种产品,则生产B产品(50﹣x)件,共需要甲种原料[9x+4(50﹣x)]千克,乙种原料[3x+10(50﹣x)]千克,由题意得:
;
(2)∵,解得:30≤x≤32,∴x为整数,∴x=30,31,32,∴有3种生产方案:
方案1:A产品30件,B产品20件;
方案2:A产品31件,B产品19件;
方案3:A产品32件,B产品18件.
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y= (x>0)的图象与一次函 数y=﹣x+b的图象分别交于A(1,3)、B两点.
(1)求m、b的值;
(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2 , S=S2﹣S1 , 求S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.
(1)AD与EF平行吗?请说明理由;
(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按照题中提供的思路点拨,先填空,然后完成解答的全过程.
如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.
思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知△ABD是_三角形.同理由已知条件∠BCD=120°得到∠DCE=_,且CE=CD,可知_;
(2)要证BC+DC=AC,可将问题转化为证两条线段相等,即_=_;
(3)要证(2)中所填写的两条线段相等,可以先证明_.请写出完整的证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。
(1)1个大餐厅和1个小餐厅分别可供多少名学生就餐?
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育委员统计了全班同学60秒跳绳的次数,并列出下列人数次数分布表,回答下列问题:
(1)全班有多少人?
(2)组距、组数是多少?
(3)跳绳次数在100≤x<140范围内同学有多少人,占全班的百分之几(精确到0.01%)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn﹣1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com