精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系 中,正方形 的顶点 轴上,且 ,则正方形 的面积是( )

A.
B.
C.
D.

【答案】D
【解析】

解:作BEOA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
OD=AE=5,
,
∴正方形 的面积是: ,故选D.
【考点精析】根据题目的已知条件,利用勾股定理的概念和正方形的性质的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】
(1)如图①,∠AOB=60°,OD平分∠BOC,OE平分∠AOC,则∠EOD=度;

(2)若∠AOB=90°,其它条件不变,则∠EOD=;
(3)若∠AOB=α,其它条件不变,则∠EOD=
(4)类比应用:如图②,已知线段AB,C是线段AB上任一点,D、E分别是AC、CB的中点,试猜想DE与AB的数量关系为 , 并写出求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某课外小组为了解本校2014-2015学年八年级700名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,根据收集的数据绘制了如下的频数分布表和频数分布直方图(各组数据包括最小值,不包括最大值).
(1)补全下面的频数分布表和频数分布直方图:

(2)可以估计这所学校2014-2015学年八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1)所示,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.

(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应的数轴上的数是 , 点H对应的数轴上的数是
(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=a,试用a来表示∠M的大小:(写出推理过程)
(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和
∠FOC的平分线交于点N,求∠N+∠M的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,错误的是(  )

A.菱形的对角线互相垂直平分

B.正方形的对角线互相垂直平分且相等

C.矩形的对角线相等且平分

D.平行四边形的对角线相等且垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCO中,O为坐标原点,Ay轴上,Cx轴上,B的坐标为(86),P是线段BC上动点,点D是直线y=2x﹣6上第一象限的点,若APD是等腰直角三角形,则点D的坐标为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年国庆节放假八天,高速公路免费通行,各地风景区游人如织.其中闻名于世的北京故宫在10月1日的游客人数就已经达到了7万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):

(1)10月3日的人数为万人;
(2)这八天,游客人数最多的是10月日,达到万人;游客人数最少的是10月日,为万人;
(3)这8天参观故宫的总人数约为万人(结果精确到万位)
(4)如果你们一家人打算在下一个国庆节参观故宫,请你对你们的出行日期提一个建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;

(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校少年宫数学课外活动初三小组的同学为测量一座铁塔AM的高度如图,他们在坡度是i=1:25的斜坡DED处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°45°,斜坡高EF=2米,CE=13米,CH=2米。大家根据所学知识很快计算出了铁塔高AM。亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程。(数据≈141 ≈173供选用,结果保留整数)

查看答案和解析>>

同步练习册答案