分析 首先设P(a,-2a-2),A(m,m2),再表示出B点坐标,进而利用根的判别式求出,无论a为何值时,关于m的方程总有两个不相等的实数根,进而得出答案.
解答 证明:设P(a,-2a-2),A(m,m2).
如图所示,![]()
分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.
∵PA=AB,∴AE是梯形PGFB的中位线,
∴GE=EF,AE=$\frac{1}{2}$(PG+BF).
∵OF=|EF-OE|,GE=EF,
∴OF=|GE-EO|
∵GE=GO-EO=m-a,EO=-m,
∴OF=|m-a-(-m)|=|2m-a|,
∴OF=2m-a,
∵AE=$\frac{1}{2}$(PG+BF),
∴BF=2AE-PG=2m2+2a+2,
可得:B(2m-a,2m2+2a+2).
∵点B在抛物线y=x2上,
∴2m2+2a+2=(2m-a)2
整理得:2m2-4am+a2-2a-2=0.
△=8(a+1)2+8>0,
∴无论a为何值时,关于m的方程总有两个不相等的实数根.
即对于任意给定的点P,抛物线上总能找到满足条件的点A,使得PA=AB成立.
点评 本题考查二次函数与一次函数的图象与性质、梯形及梯形中位线、一元二次方程等知识点,掌握二次函数、一次函数点的坐标特征,正确表示出B点坐标是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com