【题目】在平面直角坐标系中,将点A(3,4)绕原点旋转90°得点B,则点B坐标为 .
【答案】(﹣4,3)或(4,﹣3).
【解析】
试题分析:有两种情况:当逆时针旋转时,B点在B1位置上,过B1N⊥x轴于N,过A作AM⊥x轴于M,当顺时针旋转时,B到B2位置上,过B2Q⊥y轴于Q,求出AM=4,OM=3,
将点A(3,4)绕原点旋转90°得点B,根据全等三角形的判定得出△B1NO≌△OMA,△AOM≌△B2OQ,根据全等三角形的性质得出B1N=OM=3,ON=AM=4,OQ=OM=3,B2Q=AM=4,即可得出答案.
解:
有两种情况:当逆时针旋转时,B点在B1位置上,过B1N⊥x轴于N,过A作AM⊥x轴于M,当顺时针旋转时,B到B2位置上,过B2Q⊥y轴于Q,
则∠B1NO=∠AM0=∠B2QO=90°,
∵A(3,4),
∴AM=4,OM=3,
∵将点A(3,4)绕原点旋转90°得点B,
∴∠B1OA=∠AOB2=90°,OA=OB1=OB2,
∴∠B1+∠B1ON=90°,∠B1ON+∠AOM=90°,∠A+∠AOM=90°,∠AOM+∠B2OM=90°,∠B2OM+∠B2OQ=90°,
∴∠B1=∠AOM,∠AOM=∠B2OQ,
在△B1NO和△OMA中
∴△B1NO≌△OMA(AAS),
∴B1N=OM=3,ON=AM=4,
∴此时B的坐标为(﹣4,3);
同理△AOM≌△B2OQ,
则OQ=OM=3,B2Q=AM=4,
此时B的坐标为(4,﹣3).
故答案为:(﹣4,3)或(4,﹣3).
科目:初中数学 来源: 题型:
【题目】2016湖南长沙第8题)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
A.(﹣2,﹣1) B.(﹣1,0) C.(﹣1,﹣1) D.(﹣2,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED= °
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF;
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若△ABC的三边a、b、c满足条件(a﹣b)(a2+b2﹣c2)=0,则△ABC为( )
A. 等腰三角形 B. 直角三角形
C. 等腰三角形或直角三角形 D. 等腰直角三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com