精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知四边形ABCD是四个角都是直角,四条边都相等的正方形,点E在BC上,且CE=
1
4
BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=
1
4
S四边形ABCF
;④∠AFE=90°,其中正确的结论的个数有(  )
A、1个B、2个C、3个D、4个
分析:由“点F是CD的中点,延长AF与BC的延长线交于点M”知AD=CM,即AB=CM,由边长关系可知AE=EM,F为中点知,EF⊥AM,再根据面积S四边形ABCF=S□ABCD-S△ADF得面积关系.
解答:解:由题意知,∵点F是CD的中点,∴DF=CF,
又∵∠D=∠FCM,∠DFA=∠CFM,
∴△ADF≌△MCF,
∴CM=AD=AB,
①正确;
设正方形ABCD边长为4,
∵CE=
1
4
BC=1,
∴BE=3,
∴AE=5,
∴AE=AB+CE,
②正确;
EM=CM+CE=5=AE,
又∵F为AM的中点,
∴EF⊥AM,
④正确,
由CF=2,CE=1得EF=
5

由DF=2,AD=4得AF=2
5

∴S△AEF=5,
又S△ADF=4,
∴S四边形ABCF=S□ABCD-S△ADF=12,
③不正确,
故正确的有3个,选C.
点评:本题考查了正方形的性质与全等三角形的判定与性质.注意对角线相互垂直平分相等的综合性质的应用,是基础题,要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案