【题目】如图,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0),交y轴于点C,点D是线段OB上一动点,连接CD,将CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF,CE交于点G.
(1)求抛物线解析式;
(2)求线段DF的长;
(3)当DG=时,
①求tan∠CGD的值;
②试探究在x轴上方的抛物线上,是否存在点P,使∠EDP=45°?若存在,请写出点P的坐标;若不存在,请说明理由.
【答案】(1)抛物线解析式为:y=﹣x2+x+3;(2)DF==3;(3)①tan∠CGD=3;
②P点坐标为(,).
【解析】
试题分析:(1)把A点和B点坐标代入y=ax2+bx+3中得到关于a、b的方程组,然后解方程组求出a、b即可得到抛物线解析式;
(2)如图1,先求出C点坐标,再根据旋转的性质得到CD=DE,∠CDE=90°,再证明△OCD≌△HDE得到HD=OC=3,接着说明四边形OCFH为矩形得到HF=OC=3,然后利用勾股定理计算DF;
(3)①利用△CDE和△DFH都是等腰直角三角形得到∠DCE=45°,∠DFH=45°,于是有∠DFC=45°,则可证明△DCG∽△DFC,根据相似的性质得=,∠DGC=∠DCF,接着利用相似比可计算出CD=,利用∠DCF=∠2得到∠CGD=∠2,然后在Rt△OCD中求出∠2的正切值即可得到tan∠CGD的值;
②根据△DCG∽△DFC得到HD=OC=3,EH=OD=1,则E(4,1),取CE的中点M,如图2,利用线段的中点坐标公式得到M(2,2),根据等腰直角三角形的性质判断DP经过CE的中点M,接下来利用待定系数法求出直线DP的解析式为y=2x﹣2,然后解方程组可得P点坐标.
试题解析:(1)∵抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0),
∴,解得,∴抛物线解析式为:y=﹣x2+x+3;
(2)当x=0时,y=﹣x2+x+3=3,则C(0,3),如图1,
∵CD绕点D顺时针旋转90°得到线段DE,
∴CD=DE,∠CDE=90°,
∵∠2+∠3=90°,
而∠1+∠2=90°,
∴∠1=∠3,
在△OCD和△HDE中
,
∴△OCD≌△HDE,
∴HD=OC=3,
∵CF⊥BF,
∴四边形OCFH为矩形,
∴HF=OC=3,
∴DF==3;
(3)①∵△CDE和△DFH都是等腰直角三角形,如图1,
∴∠DCE=45°,∠DFH=45°,
∴∠DFC=45°,
而∠CDG=∠FDC,
∴△DCG∽△DFC,
∴,∠DGC=∠DCF,即,解得CD=,
∵CF∥OH,
∴∠DCF=∠2,
∴∠CGD=∠2,
在Rt△OCD中,OD===1,
∴tan∠2==3,
∴tan∠CGD=3;
②∵OD=1,
∴D(1,0),
∵△OCD≌△HDE,
∴HD=OC=3,EH=OD=1,
∴E(4,1),
取CE的中点M,如图2,则M(2,2),
∵△DCE为等腰直角三角形,∠EDP=45°,
∴DP经过CE的中点M,
设直线DP的解析式为y=mx+n,
把D(1,0),M(2,2)代入得,解得,
∴直线DP的解析式为y=2x﹣2,
解方程组得或(舍去),
∴②P点坐标为(,).
科目:初中数学 来源: 题型:
【题目】定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.
(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为 .
(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.
(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.
①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;
②求cos∠PDC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如图:
(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其他垃圾)
根据图表解答下列问题:
(1)在抽样数据中,产生的有害垃圾共多少吨?
(2)请将条形统计图补充完整;
(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若a+b=2,则称a与b是关于1的平衡数.
(1)3与 是关于1的平衡数,5﹣ 与 是关于1的平衡数;
(2)若(m+)×(1﹣)=﹣5+3,判断m+与5﹣是否是关于1的平衡数,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)写出A1,B1,C1的坐标(直接写出答案),A1 ;B1 ;C1 .
(3)△ A1B1C1的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab, , 都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com