精英家教网 > 初中数学 > 题目详情

已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.

解:∵a+b+c=0,abc=2,
∴a,b,c中有两个负数,一个正数,
不妨设a<0,b<0,c>0,
∴a+b=-c,ab=
∴可以把a,b看作方程x2+cx+=0的解,
∴△=c2-4•≥0,解得c≥2,
∴原式=-a-b+c=2c≥4,
即|a|+|b|+|c|的最小值为4.
分析:由a+b+c=0,abc=2,得到a,b,c中有两个负数,一个正数,不妨设a<0,b<0,c>0,再由a+b=-c,ab=,这样可以把a,b看作方程x2+cx+=0,根据根的判别式得到△=c2-4•≥0,解得c≥2,然后化简原式得到-a-b+c=2c,即可得到|a|+|b|+|c|的最小值.
点评:本题考查了一元二次方程根的判别式:如方程有两个实数根,则△≥0.也考查了一元二次方程根与系数的关系以及绝对值的含义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程
1
4
x2-2
a
x+(a+1)2=0
有实根.
(1)求a的值;
(2)若关于x的方程mx2+(1-m)x-a=0的所有根均为整数,求整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数f(x)=ax2+4x+b,其中a<0,a、b是实数,设关于x的方程f(x)=0的两根为x1,x2,f(x)=x的两实根为α、β.
(1)若|α-β|=1,求a、b满足的关系式;
(2)若a、b均为负整数,且|α-β|=1,求f(x)解析式;
(3)试比较(x1+1)(x2+1)与7的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2+kx-1=0.
(1)求证:不论k为何值,方程均有两不等实根;
(2)已知方程的两根之和为2,求k的值及方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•河南)为了了解中学生的身体素质情况,现抽取了某校实初中三年级50名学生,对每各学生进行了100米跑,立定跳远、掷铅球三个项目的测试,每个项目满分10分,图为将学生所得的三项成绩(成绩均为整数)之和进行整理后,分成五组画出频率分布直方图.已知从左到右前四个小组的频率分别是0.02,0.1,0.12,0,46,根据已知条件及图形提供的信息下列问题:
①每五小组的频数是多少?
②如果23分(包括23)以上表明身体素质良好,那么身体素质良好的学生占全部测试学生百分率是多少?
③在这次测试中,学生成绩的中位数落在第几小组内?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于的方程有实根.
(1)求的值;
(2)若关于的方程的所有根均为整数,求整数的值

查看答案和解析>>

同步练习册答案