精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,点P、Q、R分别在AB、BC、CA边上,AP=数学公式AB,BQ=数学公式BC,CR=数学公式CA.已知阴影△PQR的面积是19平方厘米,则△ABC面积是________.

45.6平方厘米
分析:利用三角形的面积与边长之间的关系,求出阴影部分面积与三角形ABC的关系,代入阴影部分的面积即可求出△ABC的面积.
解答:解:如图所示,连接AQ,则有△ABQ.
∵BQ=BC,
∴S△ABQ=S△ABC
又∵AP=AB,
∴S△PBQ=S△ABQ=×S△ABC=S△ABC
连接BR,
∵RC=AC,
∴S△BCR=S△ABC
又∵BQ=BC,
∴S△QCR=S△BCR=S△ABC
连接CP,
∵AP=AB,
∴S△ACP=S△ABC
又∵RC=AC,
∴S△APR=S△ACP=S△ABC
即:S△PBQ+S△QCR+S△APR=(++)S△ABC=S△ABC
S阴影△PQR=(1-)S△ABC=S△ABC=19,
∴S△ABC=×19=45.6(平方厘米).
故答案为:45.6平方厘米.
点评:本题主要考查了三角形面积公式的灵活应用,关键在于找出阴影部分的面积与△ABC的面积之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案