精英家教网 > 初中数学 > 题目详情
如图,OA和OB是⊙O的半径,OB=2,OA⊥OB,P是OA上任一点,BP的延长线交⊙O于点Q,过点Q的⊙O的切线交OA延长线于点R.
(Ⅰ)求证:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的长.
(1)连接OQ,
∵QR是切线,
∴∠OQR=90°,
∴∠BQO+∠PQR=90°,
∵OA⊥OB,∴∠BOA=90°,
∴∠B+∠BPO=90°,又∠BPO=∠RPQ,
∴∠B+∠RPQ=90°,
由OB=OQ得:∠B=∠BQO,
∴∠RPQ=∠RQP,
∴PR=QR;

(2)∵OP=PQ,∴∠POQ=∠PQO,
又OB=OQ,∴∠B=∠PQO,
设∠B=∠PQO=∠POQ=x,又∠BOP=90°,
根据三角形内角和定理得:
∠B+∠BOP+∠POQ+∠PQO=180°,即x+90°+x+x=180°,
解得:x=30°,即∠B=30°(2分)
∴∠RPQ=∠BPO=60°,又PR=QR,
∴△PQR为等边三角形,即PQ=QR=PR,
在直角三角形OQR中,OQ=OB=2,
根据锐角三角函数定义得:
PQ=QR=OQ•tan30°=
2
3
3
.(2分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,以AB为直径作半圆与直角梯形ABED另一腰DE相切于C点,再分别以AC、BC、
AD、CD、CE、BE为直径作半圆.若AC=3,BC=4,则图中阴影部分的面积和为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB切⊙O于A、B,PO及其延长线分别交⊙O于C、D,AE为⊙O的直径,连接AB、AC,下列结论:①
CB
=
DE
;②∠ABP=∠DOE;③AC平分∠PAB;④∠CAB=∠BAE;其中正确的有(  )
A.①②③B.①②③④C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,
求证:BD=OB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为(  )
A.3B.6C.
3
3
2
D.3
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.
(1)求⊙O的半径R;
(2)设∠BFE=α,∠CED=β,请写出α,β,90°三者之间的关系式(只需写出一个)并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)请判断CD是否⊙O的切线?并说明理由;
(2)若⊙O的半径为6,求弧AC的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

菱形的对角线交点为O,以O为圆心,O到菱形一边的距离为半径的圆与另三边的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.
求证:(1)AD=AE;(2)AB•AE=AC•DB.

查看答案和解析>>

同步练习册答案