【题目】规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
据此判断下列等式成立的是 (写出所有正确的序号)
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinxcosx;
④sin(x﹣y)=sinxcosy﹣cosxsiny.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1,点A坐标为(1,2),请解答下列问题:
(1)直接写出点B,C两点的坐标;
(2)将△ABC向下平移3个单位得到△A1B1C1,作出平移后的△A1B1C1;
(3)作出△ABC绕点O的逆时针旋转90°,得到△A2B2C2,作出旋转后的△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度y(m)与水平距离x(m)之间的关系式是(x>0)
(1)求水流喷出的最大高度是多少m?此时的水平距离是多少m;
(2)若不计其他因素,水池的半径OB至少为多少m,才能使喷出的水流不落在池外.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是矩形,,,动点以每秒4个单位的速度从点沿线段向点运动,同时动点以每秒6个单位的速度从点出发沿的方向运动,当点到达点时,、同时停止运动,若记的面积为,运动时间为,则下列图象中能大致表示,与之间函数关系图象的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点,,三点,点与点关于轴对称,点是线段上的一个动点,设点的坐标为,过点作轴的垂线交抛物线于点,交直线于点.
(1)求该抛物线所表示的二次函数的表达式;
(2)在点运动过程中,是否存在点,使得以为直径的圆与轴相切?若存在,求出的值;若不存在,请说明理由;
(3)连接,将绕平面内某点顺时针旋转,得到,点、、的对应点分别是点、、.若的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”, 那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是矩形ABCD内一点,连结P与矩形ABCD各顶点,矩形EFGH各顶点分别在边AP,BP,CP,DP上,已知AE=2EP,EF∥AB,图中两块阴影部分的面积和为S.则矩形ABCD的面积为( )
A.4SB.6SC.12SD.18S
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com