精英家教网 > 初中数学 > 题目详情

如图,已知在正方形ABCD网格中,每个小方格都是边长为1的正方形,E是边DC上的一个网格的格点.
(1)数学公式的值是______;
(2)按要求画图:在BC边长找出格点F,连接AF,使AF⊥BE;
(3)在(2)的条件下,连接EF,求cos∠AFE的值.(结果保留根式)

解:(1)根据勾股定理,EB==5,
所以,=

(2)取BF=CE,
∵在△ABF和△BCE中,

∴△ABF≌△BCE(SAS),
∴∠BAF=∠CBE,
∵∠ABE+∠CBE=90°,
∴∠BAF+∠ABE=90°,
设AF、BE相交于G,则∠AGB=180°-(∠BAF+∠ABE)=180°-90°=90°,
∴AF⊥BE;

(3)根据勾股定理,AF==5,
∵AF⊥BE,∠ABC=90°,
∴△BGF∽△ABF,
=
=
解得FG=
根据勾股定理,EF==
∴cos∠AFE===
故答案为:
分析:(1)利用勾股定理列式求出BE的长,然后求出比值即可;
(2)根据正方形的性质,取BF=CE即可;
(3)利用勾股定理列式求出AF,再利用相似三角形对应边成比例求出FG,再利用勾股定理列式求出EF,然后根据锐角的余弦等于邻边比斜边列式计算即可得解.
点评:本题考查了应用与设计作图,主要利用了正方形的性质,勾股定理的应用,全等三角形的判定与性质,相似三角形对应边成比例的性质,以及锐角三角函数,难点在于准确确定出点F的位置.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,已知在正方形ABCD中,P是BC上的一点,且AP=DP.求证:P是BC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD中,AB=2,P是边BC上的任意一点,E是边BC延长线上精英家教网一点,连接AP.过点P作PF⊥AP,与∠DCE的平分线CF相交于点F.连接AF,与边CD相交于点G,连接PG.
(1)求证:AP=FP;
(2)⊙P、⊙G的半径分别是PB和GD,试判断⊙P与⊙G两圆的位置关系,并说明理由;
(3)当BP取何值时,PG∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
6
.下列结论:
①△APD≌△AEB﹔②点B到直线AE的距离为
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正确结论的序号是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•仓山区模拟)如图,已知在正方形ABCD网格中,每个小方格都是边长为1的正方形,E是边DC上的一个网格的格点.
(1)
DE
EB
的值是
1
5
1
5

(2)按要求画图:在BC边长找出格点F,连接AF,使AF⊥BE;
(3)在(2)的条件下,连接EF,求cos∠AFE的值.(结果保留根式)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•郑州模拟)如图,已知在正方形ABCD中,EF分别是AB,BC上的点,若有AE+CF=EF,请你猜想∠EDF的度数,并说明理由.

查看答案和解析>>

同步练习册答案