精英家教网 > 初中数学 > 题目详情
如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为(  )
分析:连接AO,AB,因为PA是切线,所以∠PAO=90°,在Rt△PAO中,PA=4,OA=3,故PO=5,所以PB=2;BC是直径,所以∠BAC=90°,∠PAB和∠CAO都是∠BAO的余角,
进而证明△PAB∽△PCA,利用相似三角形的性质即可求出BA和AC的比值,进一步利用勾股定理即可求出AC的长.
解答:解:连接AO,AB,因为PA是切线,所以∠PAO=90°,在Rt△PAO中,PA=4,OA=3,故PO=5,
所以PB=2;BC是直径,
所以∠BAC=90°,
因为∠PAB和∠CAO都是∠BAO的余角,
所以∠PAB=∠CAO,
又因为∠CAO=∠ACO,
所以∠PAB=∠ACO,
又因为∠P是公共角,
所以△PAB∽△PCA,
PB
PA
=
BA
AC

所以
BA
AC
=
2
4
=
1
2
,在RT△BAC中,AB2+(2AB)2=62
解得:AB=
6
5
5

所以AC=
12
5
5

故选D.
点评:本题考查了切线的性质、圆周角定理、相似三角形的判定和性质以及勾股定理的应用,题目的综合性很强,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)计算弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为
26°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郑州模拟)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧
CBA
上一点,若∠ABC=31°,则∠P的度数为
28°
28°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为
4
73
5
4
73
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4.
(1)求∠POA的度数;
(2)求弦AB的长;
(3)过P、B两点的直线是否是⊙O的切线,说明理由.

查看答案和解析>>

同步练习册答案