D
分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
解答:正三角形的每个内角是60°,6个能密铺;
梯形的内角和是360°,放在同一顶点处4个即能密铺;
矩形的内角和是360°,放在同一顶点处4个即能密铺;
正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;
正六边形的每个内角是120°,能整除360°,能密铺.
故选D.
点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意一种多边形能进行镶嵌,说明它的内角和应能整除360°.